Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39063409

RESUMEN

BACKGROUND: The pervasive use of technology, especially among adolescents, has enabled cyber communication and brought many advantages but also led to potential violence. The issue of cyber interpersonal violence (CIV) impacting young individuals is increasingly recognized as a matter of public health; however, little is known about adolescents' perspectives of the phenomenon. This study explores adolescents' perspectives on CIV. It seeks to understand their interpretations of abuse, victim impact and reactions, violence escalation, gender issues, victimization and perpetration patterns, and bystander roles. METHODS: This qualitative study used fifteen focus groups to gather elementary school participants' perspectives on cyber interpersonal violence. From four Portuguese schools, 108 participants (M = 12.87 and SD = 0.31) participated in the study. A thematic analysis uncovered three themes. The results evidenced adolescents' perspectives about CIV. Due to the amount of time spent online, adolescents regularly encounter cyber harassment and recognize the importance of help-seeking. Mental health problems and their influence on the social and educational lives of adolescents is arising as a CIV problem. CONCLUSIONS: Parents play a crucial role in mitigating CIV as well as bystanders. Future programs should promote healthy relationships, raise CIV awareness, involve stakeholders, guide parents, integrate perpetrators into programs, and foster effective networking.


Asunto(s)
Grupos Focales , Humanos , Adolescente , Femenino , Masculino , Portugal , Niño , Ciberacoso/psicología , Ciberacoso/estadística & datos numéricos , Violencia/psicología , Víctimas de Crimen/psicología , Víctimas de Crimen/estadística & datos numéricos , Conducta del Adolescente/psicología , Internet
2.
Front Bioeng Biotechnol ; 12: 1370101, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832130

RESUMEN

Animals have been used as models to help to better understand biological and anatomical systems, and pathologies in both humans and non-human species, and sheep are often used as an in vivo experimental model for orthopedic research. Gait analysis has been shown to be an important tool in biomechanics research with clinical applications. The purpose of this study was to perform a kinematic analysis using a tridimensional (3D) reconstruction of the sheep hindlimb. Seven healthy sheep were evaluated for natural overground walking, and motion capture of the right hindlimb was collected with an optoelectronic system while the animals walked in a track. The analysis addressed gait spatiotemporal variables, hip, knee and ankle angle and intralimb joint angle coordination measures during the entire walking cycle. This study is the first that describes the spatiotemporal parameters from the hip, knee and ankle joints in a tridimensional way: flexion/extension; abduction/adduction and inter/external rotation. The results of this assessment can be used as an outcome indicator to guide treatment and the efficacy of different therapies for orthopedic and neurological conditions involving the locomotor system of the sheep animal model.

3.
Purinergic Signal ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753131

RESUMEN

Cervical cancer ranks as the fourth most common and fatal cancer among women worldwide. Studies have demonstrated a strong association between purinergic platelet signaling and tumor progression in this type of cancer. The literature shows that neoplastic cells, when in the bloodstream, secrete adenosine triphosphate (ATP) and adenosine nucleotide diphosphate (ADP) that act on their corresponding platelet P2Y and P2X receptors. The interaction of these nucleotides with their receptors results in platelet activation and degranulation, ensuing several consequences, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, matrix metalloproteinases, ADP, and ATP. These molecules play essential roles in angiogenesis and tumor metastasis in cervical cancer. Several purinergic receptors are found in endothelial cells. Their activation, especially P2Y2, by the nucleotides released by platelets can induce relaxation of the endothelial barrier and consequent extravasation of tumor cells, promoting the development of metastases. Cancer cells that enter the bloodstream during the metastatic process are also subject to high shear stress and immune surveillance. In this context, activated platelets bind to circulating tumor cells and protect them against shear stress and the host's immune system, especially against natural killer cells, facilitating their spread throughout the body. Furthermore, activation of the P2Y12 receptor present on the platelet surface promotes the release of VEGF, the main inducer of angiogenesis in cervical cancer, in addition to increasing the concentration of several other pro-angiogenic molecules. Therefore, this review will address the role of platelet purinergic signaling in tumor progression of cervical cancer and propose possible therapeutic targets.

4.
Sci Rep ; 14(1): 5458, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443455

RESUMEN

Electrical stimulation (ES) has been described as a promising tool for bone tissue engineering, being known to promote vital cellular processes such as cell proliferation, migration, and differentiation. Despite the high variability of applied protocol parameters, direct coupled electric fields have been successfully applied to promote osteogenic and osteoinductive processes in vitro and in vivo. Our work aims to study the viability, proliferation, and osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells when subjected to five different ES protocols. The protocols were specifically selected to understand the biological effects of different parts of the generated waveform for typical direct-coupled stimuli. In vitro culture studies evidenced variations in cell responses with different electric field magnitudes (numerically predicted) and exposure protocols, mainly regarding tissue mineralization (calcium contents) and osteogenic marker gene expression while maintaining high cell viability and regular morphology. Overall, our results highlight the importance of numerical guided experiments to optimize ES parameters towards improved in vitro osteogenesis protocols.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Humanos , Huesos , Diferenciación Celular , Estimulación Eléctrica , Factores Inmunológicos
5.
J Mater Chem B ; 12(11): 2771-2794, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38384239

RESUMEN

In this work, we propose a simple, reliable, and versatile strategy to create 3D electroconductive scaffolds suitable for bone tissue engineering (TE) applications with electrical stimulation (ES). The proposed scaffolds are made of 3D-extruded poly(ε-caprolactone) (PCL), subjected to alkaline treatment, and of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), anchored to PCL with one of two different crosslinkers: (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS). Both cross-linkers allowed the formation of a homogenous and continuous coating of PEDOT:PSS to PCL. We show that these PEDOT:PSS coatings are electroconductive (11.3-20.1 S cm-1), stable (up to 21 days in saline solution), and allow the immobilization of gelatin (Gel) to further improve bioactivity. In vitro mineralization of the corresponding 3D conductive scaffolds was greatly enhanced (GOPS(NaOH)-Gel - 3.1 fold, DVS(NaOH)-Gel - 2.0 fold) and cell colonization and proliferation were the highest for the DVS(NaOH)-Gel scaffold. In silico modelling of ES application in DVS(NaOH)-Gel scaffolds indicates that the electrical field distribution is homogeneous, which reduces the probability of formation of faradaic products. Osteogenic differentiation of human bone marrow derived mesenchymal stem/stromal cells (hBM-MSCs) was performed under ES. Importantly, our results clearly demonstrated a synergistic effect of scaffold electroconductivity and ES on the enhancement of MSC osteogenic differentiation, particularly on cell-secreted calcium deposition and the upregulation of osteogenic gene markers such as COL I, OC and CACNA1C. These scaffolds hold promise for future clinical applications, including manufacturing of personalized bone TE grafts for transplantation with enhanced maturation/functionality or bioelectronic devices.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Osteogénesis , Hidróxido de Sodio , Gelatina , Estimulación Eléctrica
6.
Eur J Investig Health Psychol Educ ; 14(2): 299-310, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38391487

RESUMEN

Police officers (POs) frequently encounter high stress and burnout risks in their demanding professional environment. This study delves into the relationship between physical activity (PA), health-related quality of life (HRQoL), and job performance among POs. A cross-sectional survey was conducted involving 1175 POs, with 691 providing complete responses. The survey included questions on biosocial and professional characteristics; the International Physical Activity Questionnaire-short form; the Short Form Health Survey version 2.0; and a qualitative job performance evaluation. The key findings highlight that vigorous PA significantly enhances job performance. About 46.2% of POs engage in vigorous PA, with a notable 73.7% participating in some form of PA weekly. This study also found that age and gender considerably impact the HRQoL, especially in mental health aspects like vitality and social functioning. Vigorous PA is linked to higher job performance ratings, especially when practised consistently. In conclusion, this research underscores the importance of vigorous PA in improving job performance among POs. We suggest that institutions prioritise facilitating environments that encourage regular PA, recognising its substantial benefits in both professional effectiveness and the overall health of POs. This study contributes to understanding the critical role of physical fitness in enhancing the occupational well-being of law enforcement personnel.

7.
Aust Endod J ; 50(1): 40-51, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37849412

RESUMEN

This study aims to assess the influence of root canal preparation, irrigation needle design and its placement depth in the irrigation flow of confluent canals during syringe irrigation. A mandibular molar presenting two confluent canals in its mesial root was sequentially prepared and scanned by micro-computed tomography after mechanical preparation up to ProTaper Next system sizes X2 (25/.06v), X3 (30/.07v) and X4 (40/.06v). In each of the root canal preparation models, a side-vented and an open-ended needle at 5, 3 and 2 mm from the working length were included, and irrigation flow was assessed by a validated computational fluid dynamics model. The results revealed that the irrigant flowed out of the confluent canals mainly through the canal that did not have the needle. Apical penetration and renewal of the irrigant were most efficiently achieved with the use of a 30G open-ended needle and a 30/.07v preparation.


Asunto(s)
Cavidad Pulpar , Hidrodinámica , Cavidad Pulpar/diagnóstico por imagen , Microtomografía por Rayos X , Jeringas , Irrigantes del Conducto Radicular , Irrigación Terapéutica , Preparación del Conducto Radicular
8.
Materials (Basel) ; 16(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37763514

RESUMEN

Additive manufacturing (AM), also known as three-dimensional (3D) printing, allows the fabrication of complex parts, which are impossible or very expensive to produce using traditional processes. That is the case for dinnerware and artworks (stoneware, porcelain and clay-based products). After the piece is formed, the greenware is fired at high temperatures so that these pieces gain its mechanical strength and aesthetics. The conventional (gas or resistive heating elements) firing usually requires long heating cycles, presently requiring around 10 h to reach temperatures as high as 1200 °C. Searching for faster processes, 3D-printed stoneware were fired using microwave (MW) radiation. The pieces were fired within 10% of the conventional processing time. The temperature were controlled using a pyrometer and monitored using Process Temperature Control Rings (PTCRs). An error of 1.25% was calculated between the PTCR (1207 ± 15 °C) and the pyrometer (1200 °C). Microwave-fast-fired pieces show similar mechanical strength to the references and to the electrically fast-fired pieces (41, 46 and 34 (N/mm2), respectively), presenting aesthetic features closer to the reference. Total porosities of ~4%, ~5% and ~9% were determined for microwave, electrically fast-fired and reference samples. Numerical studies have shown to be essential to better understand and improve the firing process using microwave radiation. In summary, microwave heating can be employed as an alternative to stoneware conventional firing methods, not compromising the quality and features of the processed pieces, and with gains in the heating time.

9.
Open Res Eur ; 3: 85, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645484

RESUMEN

Background: It is widely acknowledged that carbon dioxide (CO 2), a greenhouse gas, is largely responsible for climatic changes that can lead to warming or cooling in various places. This disturbs natural processes, creating instability and fragility of natural and social ecosystems. To combat climate change, without compromising technology advancements and maintaining production costs at acceptable levels, carbon capture and storage (CCS) technologies can be deployed to advance a non-disruptive energy transition. Capturing CO 2 from industrial processes such as thermoelectric power stations, refineries, and cement factories and storing it in geological mediums is becoming a mature technology. Part of the Mesohellenic Basin, situated in Greek territory, is proposed as a potential area for CO 2 storage in saline aquifers. This follows work previously done in the StrategyCCUS project, funded by the EU. The work is progressing under the Pilot Strategy, funded by the EU. Methods: The current investigation includes geomechanical and petrophysical methods to characterise sedimentary formations for their potential to hold CO 2 underground. Results: Samples were found to have both low porosity and permeability while the corresponding uniaxial strength for the Tsotyli formation was 22 MPa, for Eptechori 35 MPa and Pentalofo 74 MPa. Conclusions: The samples investigated indicate the potential to act as cap-rocks due to low porosity and permeability, but fluid pressure within the rock should remain within specified limits; otherwise, the rock may easily fracture and result in CO 2 leakage or/and deform to allow the flow of CO 2. Further investigation is needed to identify reservoir rocks as well more sampling to allow for statistically significant results.

10.
Front Psychiatry ; 14: 1168672, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275969

RESUMEN

Background: The field of view (FOV) considered in MRI-guided forward models of electroconvulsive therapy (ECT) are, as expected, limited to the MRI volume collected. Therefore, there is variation in model extent considered across simulation efforts. This study examines the impact of FOV on the induced electric field (E-field) due to two common electrode placements: right unilateral (RUL) and bilateral (BL). Methods: A full-body dataset was obtained and processed for modeling relevant to ECT physics. Multiple extents were derived by truncating from the head down to four levels: upper head (whole-brain), full head, neck, and torso. All relevant stimulation and focality metrics were determined. The differences in the 99th percentile peak of stimulation strength in the brain between each extent to the full-body (reference) model were considered as the relative error (RE). We also determine the FOV beyond which the difference to a full-body model would be negligible. Results: The 2D and 3D spatial plots revealed anticipated results in line with prior efforts. The RE for BL upper head was ~50% reducing to ~2% for the neck FOV. The RE for RUL upper head was ~5% reducing to subpercentage (0.28%) for the full-head FOV. As shown previously, BL was found to stimulate a larger brain volume-but restricted to the upper head and for amplitude up to ~480 mA. To some extent, RUL stimulated a larger volume. The RUL-induced volume was larger even when considering the neural activation threshold corresponding to brief pulse BL if ECT amplitude was >270 mA. This finding is explained by the BL-induced current loss through the inferior regions as more FOV is considered. Our result is a departure from prior efforts and raises questions about the focality metric as defined and/or inter-individual differences. Conclusion: Our findings highlight that BL is impacted more than RUL with respect to FOV. It is imperative to collect full-head data at a minimum for any BL simulation and possibly more. Clinical practice resorts to using BL ECT when RUL is unsuccessful. However, the notion that BL is more efficacious on the premise of stimulating more brain volume needs to be revisited.

11.
Polymers (Basel) ; 15(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37177275

RESUMEN

Osteochondral (OC) defects affect both articular cartilage and the underlying subchondral bone. Due to limitations in the cartilage tissue's self-healing capabilities, OC defects exhibit a degenerative progression to which current therapies have not yet found a suitable long-term solution. Tissue engineering (TE) strategies aim to fabricate tissue substitutes that recreate natural tissue features to offer better alternatives to the existing inefficient treatments. Scaffold design is a key element in providing appropriate structures for tissue growth and maturation. This study presents a novel method for designing scaffolds with a mathematically defined curvature, based on the geometry of a sphere, to obtain TE constructs mimicking native OC tissue shape. The lower the designed radius, the more curved the scaffold obtained. The printability of the scaffolds using fused filament fabrication (FFF) was evaluated. For the case-study scaffold size (20.1 mm × 20.1 mm projected dimensions), a limit sphere radius of 17.064 mm was determined to ensure printability feasibility, as confirmed by scanning electron microscopy (SEM) and micro-computed tomography (µ-CT) analysis. The FFF method proved suitable to reproduce the curved designs, showing good shape fidelity and replicating the expected variation in porosity. Additionally, the mechanical behavior was evaluated experimentally and by numerical modelling. Experimentally, curved scaffolds showed strength comparable to conventional orthogonal scaffolds, and finite element analysis was used to identify the scaffold regions more susceptible to higher loads.

12.
Front Bioeng Biotechnol ; 11: 1308096, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38162184

RESUMEN

Bioreactors have been employed in tissue engineering to sustain longer and larger cell cultures, managing nutrient transfer and waste removal. Multiple designs have been developed, integrating sensor and stimulation technologies to improve cellular responses, such as proliferation and differentiation. The variability in bioreactor design, stimulation protocols, and cell culture conditions hampered comparison and replicability, possibly hiding biological evidence. This work proposes an open-source 3D printable design for a perfusion bioreactor and a numerical model-driven protocol development strategy for improved cell culture control. This bioreactor can simultaneously deliver capacitive-coupled electric field and fluid-induced shear stress stimulation, both stimulation systems were validated experimentally and in agreement with numerical predictions. A preliminary in vitro validation confirmed the suitability of the developed bioreactor to sustain viable cell cultures. The outputs from this strategy, physical and virtual, are openly available and can be used to improve comparison, replicability, and control in tissue engineering applications.

13.
Polymers (Basel) ; 14(21)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365737

RESUMEN

In this study, we describe the design and fabrication of an industrial injection moulding system that can be mounted and used on the NCD-SWEET small-angle X-ray scattering beamline at ALBA. We show how highly useful time-resolved data can be obtained using this system. We are able to evaluate the fraction of the material in the mould cavity and identify the first material to solidify and how this varies with the injection temperature. The design follows current industrial practice and provides opportunities to collect time-resolved data at several points within the mould cavity so that we can build up a 4D perspective of the morphology and its temporal development. The quantitative data obtained will prove invaluable for the optimisation of the next generation of injection moulding techniques. This preliminary work used results from the injection moulding of a general-purpose isotactic polypropylene.

14.
Int Endod J ; 55(12): 1394-1403, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36040378

RESUMEN

AIM: This study aimed to experimentally validate a computational fluid dynamics (CFD) model, using micro-particle image velocimetry (micro-PIV) measurements of the irrigation flow velocity field developed in confluent canals during irrigation with a side-vented needle. METHODOLOGY: A microchip with confluent canals, manufactured in polydimethylsiloxane was used in a micro-PIV analysis of the irrigation flow using a side-vented needle placed 3 mm from the end of the confluence of the canals. Velocity fields and profiles were recorded for flow rates of 0.017 and 0.1 ml/s and compared with those predicted in CFD numerical simulations (using a finite volume commercial code - FLUENT) for both laminar and turbulent regimes. RESULTS: The overall flow pattern, isovelocity and vector maps as well as velocity profiles showed a close agreement between the micro-PIV experimental and CFD predicted data. No relevant differences were observed between the results obtained with the laminar and turbulent flow models used. CONCLUSIONS: Results showed that the laminar CFD modelling is reliable to predict the flow in similar domains.


Asunto(s)
Hidrodinámica , Agujas , Simulación por Computador , Reología , Endodoncia
16.
Sci Rep ; 12(1): 11049, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773278

RESUMEN

Capacitively Coupled (CCoupled) electric fields are used to stimulate cell cultures in Tissue Engineering. Knowing the electric field (E-Field) magnitude in the culture medium is fundamental to establish a relationship between stimulus strength and cellular effects. We analysed eight CCoupled studies and sought to corroborate the reported estimates of the E-Field in the culture medium. First, we reviewed the basic physics underlying CCoupled stimulation and delineated three approaches to estimate the E-field. Using these approaches, we found that the reported values were overestimated in five studies, four of which were based on incorrect assumptions. In all studies, insufficient information was provided to reproduce the setup exactly. Creating electrical models of the experimental setup should improve the accuracy of the E-field estimates and enhance reproducibility. For this purpose, we developed a free open-source tool, the E-field Calculator for CCoupled systems, which is available for download from an internet hosting platform.


Asunto(s)
Electricidad , Ingeniería de Tejidos , Estimulación Eléctrica , Reproducibilidad de los Resultados
17.
Polymers (Basel) ; 14(9)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35566813

RESUMEN

Direct digital manufacturing consists of a set of techniques that enable products to be fabricated directly from their digital definition, without the use of complex tooling or moulds. This manufacturing approach streamlines prototyping and small-scale production, as well as the mass customization of parts with complex designs immediately fixed before fabrication. With broad applicability, there are clearly opportunities in the field of medical devices for its use. However, many of the developments of direct digital manufacturing focus on simply specifying the shape or the form of the product, and this limited scope throws away many of the particular advantages of direct digital manufacturing. This work is focused on remedying this situation so that the digital specification of the fabricated product includes the properties as well as the form of the product. We use in situ time-resolving small-angle X-ray scattering measurements performed at the ALBA Synchrotron Light Source in Barcelona to evaluate the control that can be exerted on the morphology of a semi-crystalline polymer during extruder-based 3D printing. We use this as a methodology for printing the patterns of the morphology of the polymer to realise the patterns of properties of the polymeric material, specifically the modulus of the polymer. We give an example of products produced in this manner that contain spatial variation in their properties.

18.
Polymers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35566838

RESUMEN

Understanding the mechano-biological coupling mechanisms of biomaterials for tissue engineering is of major importance to assure proper scaffold performance in situ. Therefore, it is of paramount importance to establish correlations between biomaterials, their processing conditions, and their mechanical behaviour, as well as their biological performance. With this work, it was possible to infer a correlation between the addition of graphene nanoparticles (GPN) in a concentration of 0.25, 0.5, and 0.75% (w/w) (GPN0.25, GPN0.5, and GPN0.75, respectively) in three-dimensional poly(ε-caprolactone) (PCL)-based scaffolds, the extrusion-based processing parameters, and the lamellar crystal orientation through small-angle X-ray scattering experiments of extruded samples of PCL and PCL/GPN. Results revealed a significant impact on the scaffold's mechanical properties to a maximum of 0.5% of GPN content, with a significant improvement in the compressive modulus of 59 MPa to 93 MPa. In vitro cell culture experiments showed the scaffold's ability to support the adhesion and proliferation of L929 fibroblasts (fold increase of 28, 22, 23, and 13 at day 13 (in relation to day 1) for PCL, GPN0.25, GPN0.5, and GPN0.75, respectively) and bone marrow mesenchymal stem/stromal cells (seven-fold increase for all sample groups at day 21 in relation to day 1). Moreover, the cells maintained high viability, regular morphology, and migration capacity in all the different experimental groups, assuring the potential of PCL/GPN scaffolds for tissue engineering (TE) applications.

19.
Sci Rep ; 11(1): 24315, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934148

RESUMEN

Belonging to the Brazilian flora, the species Hancornia speciosa (Gomes), known as mangabeira, has bioactive compounds of interest, such as flavonoids, xanthones, and proanthocyanidins. The objective of this study was to determine how the supplementation of sugars in culture medium affects the osmotic potential of the medium, as well as its influence on cell growth and on the concentration of phenolic compounds. For this purpose, after 90 days of subculture, 20 mL aliquots of the cultures were added to flasks containing 20 mL of medium with different sugars (glucose, fructose, sucrose, mannitol, and sorbitol) under a 16-h photoperiod with a spectral range between 400 and 700 nm of photosynthetically active radiation (45-55 µmol m-2 s-1) in a shaker at 110 rpm. After 30 days, the pH, electrical conductivity, osmotic potential, biomass accumulation, and concentrations of phenolic compounds were evaluated. Regardless of their concentration in the medium, the sugars sorbitol and mannitol provided more unfavorable conditions for water absorption at the cellular level, reducing the water potential of the medium. Sucrose favored greater water absorption and biomass accumulation. Among the various sugar concentrations, 3% (30 g/L) sucrose or glucose improved the accumulation of fresh and dry cell weight and the production of polyphenols such as chlorogenic acid, epicatechin, rosmarinic acid, hesperidin, rutin, and quercetin. In addition, they resulted in a higher osmotic potential of the medium and larger cells than other carbon sources. Despite the differences in cell size, no culture conditions compromised cell survival.


Asunto(s)
Apocynaceae/crecimiento & desarrollo , Apocynaceae/metabolismo , Carbono/metabolismo , Flavonoides/metabolismo , Fitoquímicos/metabolismo , Extractos Vegetales/metabolismo , Proliferación Celular , Medios de Cultivo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4147-4151, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892139

RESUMEN

In tissue engineering, cell culture scaffolds have been widely used in combination with electrical stimulation to promote multiple cellular outcomes, like differentiation and proliferation. Nevertheless, the influence of scaffolds on the electric field delivered inside a bioreactor is often ignored and requires a deeper study. By performing numerical analysis in a capacitively coupled setup, this work aimed to predict the effects of the scaffold presence on the electric field, considering multiple combinations of scaffold and culture medium electrical properties. We concluded that the effect of the scaffold on the electric field in the surrounding culture medium was determined by the difference in electrical conductivity of these two materials. The numerical simulations pointed to significant variations in local electric field patterns, which could lead to different cellular outcomes and confound the interpretation of the experimental results.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Reactores Biológicos , Técnicas de Cultivo de Célula , Diferenciación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA