Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1341727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39193219

RESUMEN

Cardiovascular diseases are a major global health concern, responsible for a significant number of deaths each year, often linked to cardiac arrhythmias resulting from dysfunction in ion channels. Hereditary Long QT Syndrome (LQTS) is a condition characterized by a prolonged QT interval on ECG, increasing the risk of sudden cardiac death. The most common type of LQTS, LQT2, is caused by mutations in the hERG gene, affecting a potassium ion channel. The majority of these mutations disrupt the channel's trafficking to the cell membrane, leading to intracellular retention. Specific high-affinity hERG blockers (e.g., E-4031) can rescue this mutant phenotype, but the exact mechanism is unknown. This study used accelerated molecular dynamics simulations to investigate how these mutations affect the hERG channel's structure, folding, endoplasmic reticulum (ER) retention, and trafficking. We reveal that these mutations induce structural changes in the channel, narrowing its central pore and altering the conformation of the intracellular domains. These changes expose internalization signals that contribute to ER retention and degradation of the mutant hERG channels. Moreover, the study found that the trafficking rescue drug E-4031 can inhibit these structural changes, potentially rescuing the mutant channels. This research offers valuable insights into the structural issues responsible for the degradation of rescuable transmembrane trafficking mutants. Understanding the defective trafficking structure of the hERG channel could help identify binding sites for small molecules capable of restoring proper folding and facilitating channel trafficking. This knowledge has the potential to lead to mechanism-based therapies that address the condition at the cellular level, which may prove more effective than treating clinical symptoms, ultimately offering hope for individuals with hereditary Long QT Syndrome.

2.
Arch Biochem Biophys ; 759: 110088, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992456

RESUMEN

Ponatinib and tofacitinib, established kinase inhibitors and FDA-approved for chronic myeloid leukemia and rheumatoid arthritis, are recently undergoing investigation in diverse clinical trials for potential repurposing. The aryl hydrocarbon receptor (AhR), a transcription factor influencing a spectrum of physiological and pathophysiological activities, stands as a therapeutic target for numerous diseases. This study employs molecular modelling tools and in vitro assays to identify ponatinib and tofacitinib as AhR ligands, elucidating their binding and molecular interactions in the AhR PAS-B domain. Molecular docking analyses revealed that ponatinib and tofacitinib occupy the central pocket within the primary cavity, similar to AhR agonists 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and (benzo[a]pyrene) B[a]P. Our simulations also showed that these compounds exhibit good stability, stabilizing many hot spots within the PAS-B domain, including the Dα-Eα loop, which serves as a regulatory element for the binding pocket. Binding energy calculations highlighted ponatinib's superior predicted affinity, revealing F295 as a crucial residue in maintaining strong interaction with the two compounds. Our in vitro data suggest that ponatinib functions as an AhR antagonist, blocking the downstream signaling of AhR pathway induced by TCDD and B[a]P. Additionally, both tofacitinib and ponatinib cause impairment in AhR-regulated CYP1A1 enzyme activity induced by potent AhR agonists. This study unveils ponatinib and tofacitinib as potential modulators of AhR, providing valuable insights into their therapeutic roles in AhR-associated diseases and enhancing our understanding of the intricate relationship between kinase inhibitors and AhR.


Asunto(s)
Imidazoles , Piperidinas , Piridazinas , Pirimidinas , Receptores de Hidrocarburo de Aril , Humanos , Sitios de Unión , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Imidazoles/farmacología , Imidazoles/química , Ligandos , Simulación del Acoplamiento Molecular , Piperidinas/farmacología , Piperidinas/química , Unión Proteica , Piridazinas/farmacología , Piridazinas/química , Pirimidinas/farmacología , Pirimidinas/química , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , /farmacología
3.
Drug Dev Res ; 85(5): e22232, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992915

RESUMEN

The human aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, plays a pivotal role in a diverse array of pathways in biological and pathophysiological events. This position AhR as a promising target for both carcinogenesis and antitumor strategies. In this study we utilized computational modeling to screen and identify FDA-approved drugs binding to the allosteric site between α2 of bHLH and PAS-A domains of AhR, with the aim of inhibiting its canonical pathway activity. Our findings indicated that nilotinib effectively fits into the allosteric pocket and forms interactions with crucial residues F82, Y76, and Y137. Binding free energy value of nilotinib is the lowest among top hits and maintains stable within its pocket throughout entire (MD) simulations time. Nilotinib has also substantial interactions with F295 and Q383 when it binds to orthosteric site and activate AhR. Surprisingly, it does not influence AhR nuclear translocation in the presence of AhR agonists; instead, it hinders the formation of the functional AhR-ARNT-DNA heterodimer assembly, preventing the upregulation of regulated enzymes like CYP1A1. Importantly, nilotinib exhibits a dual impact on AhR, modulating AhR activity via the PAS-B domain and working as a noncompetitive allosteric antagonist capable of blocking the canonical AhR signaling pathway in the presence of potent AhR agonists. These findings open a new avenue for the repositioning of nilotinib beyond its current application in diverse diseases mediated via AhR.


Asunto(s)
Sitio Alostérico , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/química , Humanos , Regulación Alostérica/efectos de los fármacos , Pirimidinas/farmacología , Pirimidinas/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Simulación de Dinámica Molecular , Aprobación de Drogas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/antagonistas & inhibidores
4.
Arch Biochem Biophys ; 754: 109958, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499054

RESUMEN

The aryl hydrocarbon receptor (AhR) functions as a vital ligand-activated transcription factor, governing both physiological and pathophysiological processes. Notably, it responds to xenobiotics, leading to a diverse array of outcomes. In the context of drug repurposing, we present here a combined approach of utilizing structure-based virtual screening and molecular dynamics simulations. This approach aims to identify potential AhR modulators from Drugbank repository of clinically approved drugs. By focusing on the AhR PAS-B binding pocket, our screening protocol included binding affinities calculations, complex stability, and interactions within the binding site as a filtering method. Comprehensive evaluations of all DrugBank small molecule database revealed ten promising hits. This included flibanserin, butoconazole, luliconazole, naftifine, triclabendazole, rosiglitazone, empagliflozin, benperidol, nebivolol, and zucapsaicin. Each exhibiting diverse binding behaviors and remarkably very low binding free energy. Experimental studies further illuminated their modulation of AhR signaling, and showing that they are consistently reducing AhR activity, except for luliconazole, which intriguingly enhances the AhR activity. This work demonstrates the possibility of using computational modelling as a quick screening tool to predict new AhR modulators from extensive drug libraries. Importantly, these findings hold immense therapeutic potential for addressing AhR-associated disorders. Consequently, it offers compelling prospects for innovative interventions through drug repurposing.


Asunto(s)
Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Sitios de Unión , Unión Proteica , Dominios Proteicos , Ligandos
5.
Chem Biol Interact ; 392: 110942, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458309

RESUMEN

Drug metabolism is an essential process that chemically alters xenobiotic substrates to activate or terminate drug activity. Myeloperoxidase (MPO) is a neutrophil-derived haem-containing enzyme that is involved in killing invading pathogens, although consequentially, this same oxidative activity can produce metabolites that damage host tissue and play a role in various human pathologies. Cytochrome P450s (CYPs) are a superfamily of haem-containing enzymes that are significantly involved in the metabolism of drugs by functioning as monooxygenases and can be induced or inhibited, resulting in significant drug-drug interactions that lead to unanticipated adverse drug reactions. In this review, the functions of drug metabolism of MPO and CYPs are explored, along with their involvement and association for common enzymatic pathways by certain xenobiotics. MPO and CYPs metabolize numerous xenobiotics, although few reported studies have made a direct comparison between both enzymes. Additionally, we employed molecular docking to compare the active site and haem prosthetic group of MPO and CYPs, supporting their similar catalytic activities. Furthermore, we performed LCMS analysis and observed a shared hydroxylated mefenamic acid metabolite produced in both enzymatic systems. A proper understanding of the enzymology and mechanisms of action of MPO and CYPs is of significant importance when enhancing the beneficial functions of drugs in health and diminishing their damaging effects on diseases. Therefore, awareness of drugs and xenobiotic substrates involved in MPO and CYPs metabolism pathways will add to the knowledge base to foresee and prevent potential drug interactions and adverse events.


Asunto(s)
Neutrófilos , Xenobióticos , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Hemo/metabolismo , Simulación del Acoplamiento Molecular , Neutrófilos/metabolismo , Estrés Oxidativo , Peroxidasa/metabolismo , Xenobióticos/metabolismo
6.
J Chem Inf Model ; 64(6): 2021-2034, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38457778

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates biological signals to control various complicated cellular functions. It plays a crucial role in environmental sensing and xenobiotic metabolism. Dysregulation of AhR is associated with health concerns, including cancer and immune system disorders. Upon binding to AhR ligands, AhR, along with heat shock protein 90 and other partner proteins undergoes a transformation in the nucleus, heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), and mediates numerous biological functions by inducing the transcription of various AhR-responsive genes. In this manuscript, the 3-dimensional structure of the entire human AhR is obtained using an artificial intelligence tool, and molecular dynamics (MD) simulations are performed to study different structural conformations. These conformations provide insights into the protein's function and movement in response to ligand binding. Understanding the dynamic behavior of AhR will contribute to the development of targeted therapies for associated health conditions. Therefore, we employ well-tempered metadynamics (WTE-metaD) simulations to explore the conformational landscape of AhR and obtain a better understanding of its functional behavior. Our computational results are in excellent agreement with previous experimental findings, revealing the closed and open states of helix α1 in the basic helix-loop-helix (bHLH domain) in the cytoplasm at the atomic level. We also predict the inactive form of AhR and identify Arginine 42 as a key residue that regulates switching between closed and open conformations in existing AhR modulators.


Asunto(s)
Inteligencia Artificial , Receptores de Hidrocarburo de Aril , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Translocador Nuclear del Receptor de Aril Hidrocarburo/química , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo
7.
Mol Cell Biochem ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436655

RESUMEN

Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.

8.
J Mol Graph Model ; 118: 108339, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183684

RESUMEN

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that acts as a machinery that controls the expression of many genes, including cytochrome P450 CYP1A1, CYP1A2 and CYP1B1. It plays a principal role in numerous biological and toxicological functions, making it a promising target for developing therapeutic agents. Several novel small molecules targeting the AhR signaling pathway are currently under investigation as antitumor agents. Some have already advanced into clinical trials in patients with various tumors. Activation of AhR by diverse chemicals either endogenous or exogenous is initiated by the binding of these ligands to the PAS-B domain, which modulates AhR functions. There is, however, limited information about how various ligands interact with the PAS-B domain for activating or inhibiting the AhR. To better understand the mode of action of AhR agonists/antagonists. The current work proposes a combination of several computational tools to build dynamical models for the PAS-B domain bound to different ligands in mouse and human. Our findings reveal the essential roles of specific PAS-B residues (e.g., S365, V381& Q383), which mediate the AhR ligand-binding process. Our results also explain how these residues regulate the promiscuity of AhR in accommodating various chemicals in its binding PAS-B ligand-binding pocket.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Hidrocarburo de Aril , Humanos , Ratones , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Ligandos , Unión Proteica
9.
Polymers (Basel) ; 14(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36080764

RESUMEN

After more than 40 years of biopolymer development, the current research is still based on conventional laboratory techniques, which require a large number of experiments. Therefore, finding new research methods are required to accelerate and power the future of biopolymeric development. In this study, promising biopolymer-additive ranking was described using an integrated computer-aided molecular design platform. In this perspective, a set of 21 different additives with plant canola and soy proteins were initially examined by predicting the molecular interactions scores and mode of molecule interactions within the binding site using AutoDock Vina, Molecular Operating Environment (MOE), and Molecular Mechanics/Generalized Born Surface Area (MM-GBSA). The findings of the investigated additives highlighted differences in their binding energy, binding sites, pockets, types, and distance of bonds formed that play crucial roles in protein-additive interactions. Therefore, the molecular docking approach can be used to rank the optimal additive among a set of candidates by predicting their binding affinities. Furthermore, specific molecular-level insights behind protein-additives interactions were provided to explain the ranking results. The highlighted results can provide a set of guidelines for the design of high-performance polymeric materials at the molecular level. As a result, we suggest that the implementation of molecular modeling can serve as a fast and straightforward tool in protein-based bioplastics design, where the correct ranking of additives among sets of candidates is often emphasized. Moreover, these approaches may open new ways for the discovery of new additives and serve as a starting point for more in-depth investigations into this area.

10.
J Mol Graph Model ; 102: 107776, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33137694

RESUMEN

Selective calcium channel antagonists are widely used in the treatment of cardiovascular disorders. They are mainly classified into 1,4-dihydropyridine (1,4-DHPs) and non-DHPs. The non-DHPs class is further classified into phenylalkylamines (PAAs) and benzothiazepines (BZTs) derivatives. These blockers are used for the treatment of hypertension, angina pectoris, and cardiac arrhythmias. Despite their well-established efficiency, the structural basis behind their activity is not very clear. Here we report the use of a near-open confirmation (NOC) model of the Cav1.2 cardiac ion channel to examine the mode of binding of these antagonists within the pore domain as well as the fenestration of the pore-forming domains. Effects of calcium ion permeation in the presence of drug molecules were assessed using steered molecular dynamics (SMD) simulations. These studies reveal that nicardipine, a DHP derivative, shows a strong Cav1.2 blocking activity, requiring more 2500 pN force to pull calcium ion towards the channel's pore in the presence of the compound. Similar blocking activity was observed for verapamil, a PAA derivative, requiring almost 2300 pN of force. The least blocking activity was observed for Diltiazem, a BZT derivative. Our results explain the structural basis and the binding details of 1,4-DHPs, PAAs and BZTs at their distinct Cav1.2 sites and offer detailed insights into their mechanism of action in modulating the Cav1.2 channel.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo L , Sitios de Unión , Calcio , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Humanos , Canales Iónicos , Iones
11.
Eur Radiol ; 29(3): 1444-1451, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30132105

RESUMEN

BACKGROUND: With the implementation of transcatheter aortic valve replacement (TAVR) in lower-risk patients, evaluation of blood flow characteristics and the effect of TAVR on aortic dilatation becomes of considerable interest. We employed 4D flow MRI in the ascending aorta of patients after TAVR to assess wall shear stress (WSS) and compare blood flow patterns with surgical aortic valve replacement (SAVR) and age- and gender-matched controls. METHODS: Fourteen post-TAVR patients and ten age- and gender-matched controls underwent kt-PCA accelerated 4D flow MRI of the thoracic aorta at 3.0 Tesla. Velocity and wall shear stress was compared between the two groups. In addition, aortic flow eccentricity and displacement was assessed and compared between TAVR patients, controls and 14 SAVR patients recruited as part of an earlier study. RESULTS: Compared to controls, abnormally elevated WSS was present in 30±10% of the ascending aortic wall in TAVR patients. Increased WSS was present along the posterior mid-ascending aorta and the anterior distal-ascending aorta in all TAVR patients. TAVR results in eccentric and displaced flow in the mid- and distal-ascending aorta, whereas blood flow displacement in SAVR patients occurs only in the distal-ascending aorta. CONCLUSION: This study shows that TAVR results in increased blood flow velocity and WSS in the ascending aorta compared to age- and gender-matched elderly controls. This finding warrants longitudinal assessment of aortic dilatation after TAVR in the era of potential TAVR in lower-risk patients. Additionally, TAVR results in altered blood flow eccentricity and displacement in the mid- and distal-ascending aorta, whereas SAVR only results in altered blood flow eccentricity and displacement in the distal-ascending aorta. KEY POINTS: • TAVR results in increased blood flow velocity and WSS in the ascending aorta. • Longitudinal assessment of aortic dilatation after TAVR is warranted in the era of potential TAVR in lower-risk patients. • Both TAVR and SAVR result in altered blood flow patterns in the ascending aorta when compared to age-matched controls.


Asunto(s)
Aorta/fisiopatología , Estenosis de la Válvula Aórtica/cirugía , Válvula Aórtica/cirugía , Velocidad del Flujo Sanguíneo/fisiología , Prótesis Valvulares Cardíacas , Imagen por Resonancia Magnética/métodos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Anciano , Anciano de 80 o más Años , Aorta/diagnóstico por imagen , Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/diagnóstico , Estenosis de la Válvula Aórtica/fisiopatología , Femenino , Humanos , Masculino , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA