Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Zhejiang Univ Sci B ; 24(4): 336-344, 2023 Apr 15.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-37056209

RESUMEN

Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.


Asunto(s)
Microbiota , Oryza , Animales , Rumen/metabolismo , Agricultura/métodos , Suelo/química , Bacterias/metabolismo , Oryza/metabolismo , Microbiología del Suelo , Celulosa
2.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35808022

RESUMEN

Supercapacitors, as a new type of green electrical energy storage device, are a potential solution to environmental problems created by economic development and the excessive use of fossil energy resources. In this work, nitrogen/oxygen (N/O)-doped porous carbon materials for high-performance supercapacitors are fabricated by calcining and activating an organic crosslinked polymer prepared using polyethylene glycol, hydroxypropyl methylcellulose, and 4,4-diphenylmethane diisocyanate. The porous carbon exhibits a large specific surface area (1589 m2·g-1) and high electrochemical performance, thanks to the network structure and rich N/O content in the organic crosslinked polymer. The optimized porous carbon material (COCLP-4.5), obtained by adjusting the raw material ratio of the organic crosslinked polymer, exhibits a high specific capacitance (522 F·g-1 at 0.5 A·g-1), good rate capability (319 F·g-1 at 20 A·g-1), and outstanding stability (83% retention after 5000 cycles) in a three-electrode system. Furthermore, an energy density of 18.04 Wh·kg-1 is obtained at a power density of 200.0 W·kg-1 in a two-electrode system. This study demonstrates that organic crosslinked polymer-derived porous carbon electrode materials have good energy storage potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA