Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 14(1): 272, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749641

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) from human umbilical cord mesenchymal stem cells (hUMSCs) are widely considered to be the best mediators for cell-free therapy. An understanding of their composition, especially RNA, is particularly important for the safe and precise application of EVs. Up to date, the knowledge of their RNA components is limited to NGS sequencing and cannot provide a comprehensive transcriptomic landscape, especially the long and full-length transcripts. Our study first focused on the transcriptomic profile of hUMSC-EVs based on nanopore sequencing. METHODS: In this study, different EV subtypes (exosomes and microvesicles) derived from hUMSCs were isolated and identified by density gradient centrifugation. Subsequently, the realistic long transcriptomic profile in different subtypes of hUMSC-EVs was systematically compared by nanopore sequencing and bioinformatic analysis. RESULTS: Abundant transcript variants were identified in EVs by nanopore sequencing, 69.34% of which transcripts were fragmented. A series of full-length and long transcripts was also observed and showed a significantly higher proportion of intact or near-complete transcripts in exosomes than that in microvesicles derived from hUMSCs. Although the composition of RNA biotypes transported by different EV subtypes was similar, the distribution of transcripts and genes revealed the inter-heterogeneity and intra-stability between exosomes and microvesicles. Further, 85 different expressed transcripts (56 genes) and 7 fusion genes were identified. Pathway enrichment analysis showed that upregulated-expressed genes in microvesicles were mainly enriched in multiple neurodegenerative diseases, while upregulated-expressed genes in exosomes were mainly enriched in neutrophil extracellular trap formation, suggesting different functional tendencies of EV subtypes. CONCLUSIONS: This study provides a novel understanding of different types of hUMSC-EVs, which not only suggests different transcriptome sorting mechanisms between exosomes and microvesicles, but also shows that different EV subtypes from the same source have different physiological functions, suggesting distinct clinical application prospects.


Asunto(s)
Micropartículas Derivadas de Células , Exosomas , Vesículas Extracelulares , Humanos , Exosomas/genética , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/genética , Transporte Biológico , ARN
2.
Mol Cancer ; 21(1): 164, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974394

RESUMEN

Developing a strategy to specifically kill cancer cells without inducing obvious damage to normal cells may be of great clinical significance for cancer treatment. In the present study, we developed a new precise personalized strategy named "i-CRISPR" for cancer treatment through adding DNA damage repair inhibitors(i) and inducing cancer cell-specific DNA double strand breaks by CRISPR. Through in vitro and in vivo experiments, we confirmed the efficacy of this strategy in multiple cancer models and revealed the mechanism of cell death. Our strategy might provide a novel concept for precise cancer therapy.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Neoplasias , Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , Edición Génica , Humanos , Mutación , Neoplasias/genética , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA