Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(2): 321-330, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36524592

RESUMEN

Two distinct Ag/Au nanocomposites, namely, hetero-oligomers and eccentric core/shells were obtained by one-step polymer self-assembly-based fabrication. The Ag concentration-dependent, facet-specific passivation, and presence or absence of anisotropic facets were the main factors responsible for controlling the structures of the final products. Based on an understanding of the role of Ag+ ions in controlling the shape of anisotropic gold nanoparticles (AuNPs), tailored concentrations of Ag+ were applied to design nanoparticles with desired anisotropic surface facets to allow site-specific Ag coatings on AuNPs. The Ag additives acted as shape-directing agents due to an underpotential deposition (UPD) that was responsible for stabilizing the various surface facets that enclose the AuNPs. The morphology differences between the substrate samples resulted in discrete plasmonic and sensing features. In surface-enhanced Raman spectroscopy (SERS) studies, we showed that the site-selective deposition of Ag on anisotropic gold nanohexagons (AuNHs) delivers more advantages as compared to their hetero-oligomer nanostructured counterparts due to synergistic effects.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443885

RESUMEN

This work describes a novel, one-shot strategy to fabricate ultrasensitive SERS sensors based on silver/poly(methyl methacrylate) (PMMA) nanocomposites. Upon spin coating of a dispersion of PMMA and silver precursor on N-doped silicon substrate, closely separated silver nanoparticles were self-assembled into uniform nanospheres. As a result, a thin hydrophobic PMMA layer embedded with Ag nanoparticles (AgNPs) was obtained on the whole silicon substrate. Consequently, a large-scale, reproducible SERS platform was produced through a rapid, simple, low-cost, and high-throughput technology. In addition, reproducible SERS features and high SERS enhancement factors were determined (SEF ~1015). This finding matches the highest SEF reported in literature to date (1014) for silver aggregates. The potential and novelty of this synthesis is that no reducing agent or copolymer was used, nor was any preliminary functionalization of the surface carried out. In addition, the AgNPs were fabricated directly on the substrate's surface; consequently, there was no need for polymer etching. Then, the synthetic method was successfully applied to prepare opaque SERS platforms. Opaque surfaces are needed in photonic devices because of the absence of secondary back reflection, which makes optical analysis and applications easier.

3.
Soft Matter ; 16(7): 1857-1865, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-31984983

RESUMEN

The optical properties of a monolayer of nanocomposite film (PMMA/gold nanocubes) were provided by fitting a proposed theoretical model to spectroscopic ellipsometry (SE) measurements. For such a thin film, these features cannot be successfully determined by means of experimental and conventional effective medium theory such as Maxwell-Garnett or Bruggeman. To make it possible, we developed a model of two classical Lorentz oscillators; one for a PMMA layer and the other for GNCs, revealing one homogeneous layer and rapid analysis without the need for large computational resources. Additionally, we tailored both the size and number of GNCs in the PMMA layer by tuning the synthesis parameters as seen in scanning electron microscopy (SEM) images. In parallel, SE measurements clearly highlighted the change in the optical properties of GNCs as a function of their density on the substrate and dimensions. Our findings demonstrate that SE is an alternative method to characterize layered GNCs on opaque substrates efficiently, which has potential implications for designing other morphologies in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA