Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(35): 47655-47673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39003426

RESUMEN

Phytoremediation is an in situ remediation and eco-friendly technique employing accumulator plant species to remove trace elements (TEs) from contaminated sites. Moreover, it has been demonstrated that both natural and synthetic amendments can enhance trace elements (TEs) phytoremediation from polluted soils through bioenergy crops. This work assessed the synergistic impact of two tested biochar (BC) from data palm (B1) and Prosopis (B2) (1.5%/ kg), citric acid (CA, 1.5 mmol/kg) and vermiwash (VW, 20 ml/kg) to enhance the remediation of tested TEs (Mn, Zn, Cd, Pb, Ni, Cu, and Fe) from Mahad AD'Dahab mine-contaminated soil by sorghum (Sorghum bicolor L.). The BC and CA amendments alone and combined with VW significantly augmented the proliferation and survival of sorghum grown in mine-contaminated soil. Considering the individual and combined applications of VW and BC, the influence on plant growth followed this order: K < VW < B2 < B1 < B1 + VW < B2 + VW < CA < CA + VW. Applying tested BC/CA and VW significantly increased chlorophyll compared to unamended soil. The outcomes revealed a substantial elevation in TE absorption in both shoot and root (p ≤ 0.05) with all tested treatments compared to the untreated soil (K). The combined application of CA and VW resulted in the most significant TE uptake of TEs at both the root and the shoot. Furthermore, adding CA or VW as a foliar spray enhanced the bioaccumulation factor (BCF) and translocation factor (TF) of studied metals. The combined addition of CA and foliar spraying of VW was more effective than the sole addition of CA or VW. Such increase reached 20.0%, 15.6%, 19.4%, 14.3%, 14.0%, and 25.6% of TF, and 13.7%, 11.9%, 8.3%, 20.9%, 20.5%,18.7%, and 19.8% of BCE for Cd, Cu, Fe, Mn, Ni, Pb, and Zn, respectively. This study highlights the efficiency of combining CA/BC with VW as a more viable option for remediating mine-contaminated soil than individual amendments. However, future research should prioritize long-term field trials to assess the efficiency of using citric acid and vermiwash for restoring contaminated mining soils.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Ácido Cítrico , Minería , Contaminantes del Suelo , Suelo , Sorghum , Carbón Orgánico/química , Ácido Cítrico/química , Suelo/química , Restauración y Remediación Ambiental/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA