Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 24(13): 15137-42, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27410665

RESUMEN

Wavelength tuning of conventional mirror-based optical parametric oscillators (OPOs) exhibits parabolically-shaped tuning curves (type-0 and type-I phase matching) or tuning branches that cross each other with a finite slope (type-II phase matching). We predict and experimentally prove that whispering gallery OPOs based on type-0 phase matching show both tuning behaviors, depending on whether the mode numbers of the generated waves coincide or differ. We investigate the wavelength tuning of optical parametric oscillation in a millimeter-sized radially-poled lithium niobate disk pumped at 1 µm wavelength generating signal and idler waves between 1.7 and 2.6 µm wavelength. Our experimental findings excellently coincide with the theoretical predictions. The investigated whispering gallery optical parametric oscillator combines the employment of the highest nonlinear-optical coefficient of the material with a controlled type-II-like wavelength tuning and with the possibility of self-phase locking.

2.
Opt Express ; 23(18): 24042-7, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26368496

RESUMEN

We demonstrate optical parametric oscillation in a millimeter-sized whispering gallery resonator suitable for broadband infrared spectroscopy. This nonlinear-optical process is quasi-phase-matched using a radial domain pattern with 30 µm period length, inscribed by calligraphic poling. The output wavelengths are selected in a controlled way over hundreds of nanometers. We achieve this by increasing the temperature of the resonator in steps such that the azimuthal mode number of the pump wave rises by one. As a proof-of-principle experiment, we measure a characteristic resonance of polystyrene in the spectral range of 2.25 - 2.45 µm.

3.
Opt Lett ; 40(9): 1932-5, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25927751

RESUMEN

A millimeter-sized, monolithic whispering gallery resonator made of a lithium tetraborate, Li2B4O7, crystal was employed for doubly resonant second-harmonic generation with a continuous-wave laser source at 490 nm. An intrinsic quality factor of 2×10(8) was observed at the pump wavelength. A conversion efficiency of 2.2% was attained with 5.9 mW of mode-matched pump power. In the lithium tetraborate resonator, it is feasible to achieve phase-matching of second-harmonic generation for pump wavelengths between 486 and 506 nm.

4.
Ground Water ; 53(3): 414-23, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24903411

RESUMEN

Flood risk is generally perceived as being a consequence of surface water inundation. However, large damage is also caused by high groundwater levels. In surface hydrology, statistical frequency analysis is a standard tool to estimate discharge with a given return period or exceedance probability. First, a suitable probability distribution is fit to a series of annual maximum peaks. Second, this distribution is used to determine the discharge corresponding to the desired return period. Where only short series of recorded data are available, the estimates can often be improved by regional frequency analysis (RFA). Unfortunately, there is little information in the literature on analogous approaches for the estimation of extreme groundwater levels. In this contribution, the applicability of l-moments-based RFA for the estimation of extreme groundwater levels is investigated. The main issues specific to groundwater levels are (1) appropriate transformation of the data, (2) criteria for identification of statistically homogeneous regions, (3) consideration of correlation between sites, and (4) choice of distribution function. This study is based on data from more than 1100 observation sites in four shallow Austrian Aquifers with a record length of 10 to 50 years. Results show that homogeneous regions for l-moments-based RFA can be identified covering about one half of the total area of the aquifers. The confidence intervals for the 30- and 100-year return levels can be significantly reduced by RFA. Out of the four investigated distribution functions, none is to be preferred generally.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Subterránea , Austria , Hidrología , Modelos Estadísticos
5.
Opt Express ; 22(25): 30795-806, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25607028

RESUMEN

Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

6.
Opt Express ; 21(20): 23942-9, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24104305

RESUMEN

The usual configuration of uniaxial whispering gallery mode resonators is a disk shaped geometry where the optic axis points along the symmetry axis, a so called z-cut resonator. Recently x-cut resonators, where the optic axis lies in the equatorial plane, became of interest as they enable extremely broadband second harmonic generation. In this paper we report on the properties of a more generalized system, the so called angle-cut resonator, where the optic axis exhibits an arbitrary angle against the symmetry axis. We show experimentally that the modal structure and quality factors are similar to common resonators but that the polarization properties differ quite significantly: due to the asymmetry the polarization depends on the equatorial position and is, in general, elliptical.

7.
Nat Commun ; 4: 1818, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23652006

RESUMEN

The generation of high-quality single-photon states with controllable narrow spectral bandwidths and central frequencies is key to facilitate efficient coupling of any atomic system to non-classical light fields. Such an interaction is essential in numerous experiments for fundamental science and applications in quantum communication and information processing, as well as in quantum metrology. Here we implement a fully tunable, narrow-band and efficient single-photon source based on a whispering gallery mode resonator. Our disk-shaped, monolithic and intrinsically stable resonator is made of lithium niobate and supports a cavity-assisted spontaneous parametric down-conversion process. The generated photon pairs are emitted into two highly tunable resonator modes. We verify wavelength tuning over 100 nm of both modes with controllable bandwidth between 7.2 and 13 MHz. Heralding of single photons yields anti-bunching with g(2)(0)<0.2.

8.
Opt Express ; 20(19): 21372-8, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-23037260

RESUMEN

We report an investigation on angle-cut beta barium borate (BBO) whispering gallery mode (WGM) resonators operating in the ultra violet (UV) wavelength range. A quality (Q) factor of 1.5 × 10(8) has been demonstrated at 370 nm. New upper bounds for the absorption coefficients of BBO are obtained from the Q factor measurements. Moreover, polarization rotations of WGMs in the angle-cut birefringent resonators are observed and investigated. To the best of our knowledge, this is not only the first reported demonstration of an angle-cut WGM resonator but also the first reported high Q WGM resonator in the UV region.

9.
Environ Monit Assess ; 179(1-4): 389-401, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20963484

RESUMEN

The spatio-temporal changes in the land cover states of the Nyando Basin were investigated for auxiliary hydrological impact assessment. The predominant land cover types whose conversions could influence the hydrological response of the region were selected. Six Landsat images for 1973, 1986, and 2000 were processed to discern the changes based on a methodology that employs a hybrid of supervised and unsupervised classification schemes. The accuracy of the classifications were assessed using reference datasets processed in a GIS with the help of ground-based information obtained through participatory mapping techniques. To assess the possible hydrological effect of the detected changes during storm events, a physically based lumped approach for infiltration loss estimation was employed within five selected sub-basins. The results obtained indicated that forests in the basin declined by 20% while agricultural fields expanded by 16% during the entire period of study. Apparent from the land cover conversion matrices was that the majority of the forest decline was a consequence of agricultural expansion. The model results revealed decreased infiltration amounts by between 6% and 15%. The headwater regions with the vast deforestation were noted to be more vulnerable to the land cover change effects. Despite the haphazard land use patterns and uncertainties related to poor data quality for environmental monitoring and assessment, the study exposed the vast degradation and hence the need for sustainable land use planning for enhanced catchment management purposes.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Abastecimiento de Agua/estadística & datos numéricos , Agricultura/estadística & datos numéricos , Ciudades/estadística & datos numéricos , Sistemas de Información Geográfica , Kenia , Desarrollo de la Planta , Tecnología de Sensores Remotos , Urbanización , Ciclo Hidrológico , Abastecimiento de Agua/análisis
10.
Opt Express ; 18(5): 4499-509, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20389462

RESUMEN

We present a fiber-based continuous-variable quantum key distribution system. In the scheme, a quantum signal of two non-orthogonal weak optical coherent states is sent through a fiber-based quantum channel. The receiver simultaneously measures conjugate quadratures of the light using two homodyne detectors. From the measured Q-function of the transmitted signal, we estimate the attenuation and the excess noise caused by the channel. The estimated excess noise originating from the channel and the channel attenuation including the quantum efficiency of the detection setup is investigated with respect to the detection of effective entanglement. The local oscillator is considered in the verification. We witness effective entanglement with a channel length of up to 2 km.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA