Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(18): 5111-5114, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39270243

RESUMEN

We experimentally study the spatial beam profile and the spectral broadening at the output of a multimode air-silica microstructure fiber taper, used along the direction of an increasing fiber diameter. By using a laser pump at 1064 nm emitting 60 ps Gaussian beam pulses, we observed a competition between Raman beam cleanup and Kerr beam self-cleaning: the multimode frequency conversion process permits to generate spectral sidebands with frequency detuning from the pump that are difficult to obtain in standard graded-index multimode fibers. The generated supercontinuum spans from 500 nm up to 2.5 µm.

2.
Opt Lett ; 48(17): 4582-4585, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656560

RESUMEN

Hyperspectral spectroscopy requires light sources with wide spectral ranges from the visible to the mid-infrared. Here, we demonstrate the first fiber-based mid-infrared supercontinuum covering three octaves of frequency by leveraging 1-µm laser technology. The process consists in spectral broadening of a 1064-nm pump toward 0.48-2.5 µm in a graded-index multimode fiber, followed by a fluoro-indate fiber used to reach deeper into the near infrared (4.3 µm). Finally, an arsenic selenide chalcogenide fiber allows us to reach the 6-µm wavelength region, providing a 0.75-6-µm supercontinuum. We illustrate the potential of this light source by recording mid-infrared absorption spectra of organic compounds.

3.
Opt Lett ; 46(23): 5890-5893, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851916

RESUMEN

Fiber-based sources delivering high-energy few-cycle pulses at high repetition rates are currently being developed in the near-infrared spectral range, thanks to the wide availability of telecommunication-grade optical fibers and components. Similar sources in the middle-wave infrared (mid-IR) spectral domain, however, are scarce, although such sources are of high interest for applications such as high-precision frequency metrology and molecular spectroscopy or as a seed source to reach further into the mid-IR via coherent nonlinear processes. Here we report on the design of a fiber-based source of 50-nJ energy 90 fs duration pulses up to 2950 nm, corresponding to 500 kW peak power. To obtain this level of peak power we exploit multi-solitonic fission and soliton self-frequency shift in large mode area fibers excited by picosecond pulses emitted at 2 µm from a megahertz repetition rate fiber laser. We leverage mature silica-based fiber technology up to 2.4 µm and restrict the use of fluoride fiber to the very last frequency-shifting stage. The level of instantaneous power and ultra-short duration achieved in this Letter pave the way to all-fiber format generation of an ultra-broadband coherent continuum in the mid-IR with profound implications for applications such as high-resolution molecular spectroscopy and imaging.

4.
Opt Lett ; 46(15): 3717-3720, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329264

RESUMEN

We present a new, to the best of our knowledge, spatial-spectral mapping technique permitting measurement of the beam intensity at the output of a graded-index multimode fiber (GIMF) with sub-nanometric spectral resolution. We apply this method to visualize the fine structure of the beam shape of a sideband generated at 1870 nm by geometric parametric instability (GPI) in a GIMF. After spatial-spectral characterization, we amplify the GPI sideband with a thulium-doped fiber amplifier to obtain a microjoule-scale picosecond pump whose spectrum is finally broadened in a segment of InF3 optical fiber to achieve a supercontinuum ranging from 1.7 up to 3.4 µm.

5.
Opt Lett ; 46(1): 66-69, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33362017

RESUMEN

Characterization of the complex spatiotemporal dynamics of optical beam propagation in nonlinear multimode fibers requires the development of advanced measurement methods, capable of capturing the real-time evolution of beam images. We present a new space-time mapping technique, permitting the direct detection, with picosecond temporal resolution, of the intensity from repetitive laser pulses over a grid of spatial samples from a magnified image of the output beam. By using this time-resolved mapping, we provide, to the best of our knowledge, the first unambiguous experimental observation of instantaneous intrapulse nonlinear coupling processes among the modes of a graded index fiber.

6.
Opt Express ; 28(10): 14333-14344, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403474

RESUMEN

We experimentally demonstrate that spatial beam self-cleaning can be highly efficient when obtained with a few-mode excitation in graded-index multimode optical fibers. By using 160 ps long, highly chirped (6 nm bandwidth at -3dB) optical pulses at 1562 nm, we demonstrate a one-decade reduction of the power threshold for spatial beam self-cleaning, with respect to previous experiments using pulses with laser wavelengths at 1030-1064 nm. Self-cleaned beams remain spatio-temporally stable for more than a decade of their peak power variation. The impact of input pulse temporal duration is also studied.

7.
Opt Lett ; 44(9): 2318-2321, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31042213

RESUMEN

Tunable femtosecond light sources in the short wave and middle wave infrared regions are of utmost importance for various applications ranging from multiphoton microscopy, mid-infrared supercontinuum generation to high-harmonic generation. We report on an all-fusion-spliced fiber laser emitting 80 fs pulses up to 2.9 µm with 35 kW peak power. The laser is based on Raman self-frequency shift effect from 1560 nm up to 3000 nm in germanium-doped fibers fabricated by the widespread modified chemical vapor deposition process.

8.
Opt Lett ; 43(20): 5098-5101, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30320829

RESUMEN

We introduce a fiber-based laser system providing 130 fs pulses with 3.5 nJ energy at 920 nm at a 43 MHz repetition rate and illustrate the potential of the source for two-photon excited fluorescence microscopy of living mouse brain. The laser source is based on frequency-doubling high-energy solitons generated and frequency-shifted to 1840 nm in large mode area fibers. This simple laser system could unleash the potential of two-photon microscopy techniques in the biology laboratory where green fluorescent proteins with two-photon absorption spectrum peaking around 920 nm are routinely used.

9.
Opt Lett ; 38(13): 2230-2, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23811886

RESUMEN

Optimization of Yb-free Er-doped fiber for lasers and amplifiers cladding pumped at 976 nm was performed in this Letter. The single-mode fiber design includes an increased core diameter of 34 µm and properly chosen erbium and co-dopant concentrations. We demonstrate an all-fiber high power laser and power amplifier based on this fiber with the record slope efficiency of 40%. To the best of our knowledge, the achieved output power of 75 W is the highest power reported for such lasers.


Asunto(s)
Erbio , Rayos Láser , Fibras Ópticas
10.
Opt Lett ; 37(15): 3186-8, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859127

RESUMEN

Direct amplification of output from chirped pulse oscillator (CPO) to 3.3 W of average power (pulse energy of 118 nJ in 20 ps pulse duration before compression) was achieved in a properly designed cladding pumped large mode area Er-doped fiber. Various configurations of CPO cavity with different FWHM of output spectrum and pulse duration were investigated. Fourier limit compression with 480 fs pulse duration and 32 kW peak power has been obtained for pulses with 14.8 nm FWHM spectrum. Subsequent nonlinear compression in a standard SMF-28 fiber yielded pulses as short as 145 fs.

11.
Opt Lett ; 36(6): 993-5, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21403753

RESUMEN

A highly birefringent photonic bandgap Bragg fiber loop mirror configuration for simultaneous measurement of strain and temperature is proposed. The group birefringence and the sharp loss peaks are observable in the spectral response. Because the sensing head presents different sensitivities for strain and temperature measurands, these physical parameters can be discriminated by using the matrix method. It should be noted that this Bragg fiber presents high sensitivity to temperature, of ∼5.75 nm/°C, due to the group birefringence variation. The rms deviations obtained are ±19.32 µÎµ and ±0.5 °C, for strain and temperature measurements, respectively.

12.
Opt Lett ; 35(13): 2233-5, 2010 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-20596204

RESUMEN

Very large-mode-area Yb(3+)-doped single-mode photonic bandgap (PBG) Bragg fiber oscillators are considered. The transverse hole-burning effect is numerically modeled, which helps properly design the PBG cladding and the Yb(3+)-doped region for the high-order mode content to be carefully controlled. A ratio of the Yb(3+)-doped region diameter to the overall core diameter of 40% allows for single-mode emission, even for small spool diameters of 15 cm. Such a fiber was manufactured and subsequently used as the core element of a cw oscillator. Very good beam quality parameter M(2)=1.12 and slope efficiency of 80% were measured. Insensitivity to bending, exemplified by the absence of temporal drift of the beam, was demonstrated for curvature diameter as small as 15 cm.

13.
Opt Lett ; 32(10): 1202-4, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17440534

RESUMEN

It is found that the reflection of leaky radiation from the interface between the outer silica cladding and the coating polymer greatly modifies the loss spectrum of Bragg fibers. A simple model that describes this effect is proposed and confirmed by measurement and computation.

14.
Opt Express ; 14(2): 562-9, 2006 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19503371

RESUMEN

We describe the design and characterization of solid core large mode area bandgap fibers exhibiting low propagation loss and low bend loss. The fibers have been prepared by modified chemical vapor deposition process. The bandgap guidance obtained thanks to a 3-bilayer periodic cladding is assisted by a very slight index step (5.10-4) in the solid core. The propagation loss reaches a few dB/km and is found to be close to material loss.

15.
Opt Express ; 14(7): 2994-9, 2006 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19516438

RESUMEN

We propose a new design of microstructured fiber combining large doped area (500 mum(2)), high rare earth concentration and single mode propagation despite the high core refractive index (n(Si) + 0.01). Actually, original guiding properties, based on a total internal reflection guidance regime modified by coupling between core and resonant cladding modes (close to the ARROW model) ensure single mode propagation. Moreover spectral properties which are largely governed by characteristics of high index cladding rods can be adjusted by properly choosing diameter and refractive index of the rods.

16.
Opt Lett ; 29(7): 700-2, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15072363

RESUMEN

We present an erbium-doped dispersion-compensating fiber made up of two asymmetric concentric cores, inner and outer matched claddings, and erbium located in the central core only. We demonstrate a high negative chromatic dispersion value [-700 ps/(nm km) at 1568 nm], significant modification of the gain spectrum compared with that of a classic erbium-doped fiber amplifier, and 30-dB peak small-signal gain at 1535 and 1553 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA