RESUMEN
Although simulations have shown that implied weighting (IW) outperforms equal weighting (EW) in phylogenetic parsimony analyses, weighting against homoplasy lacks extensive usage in palaeontology. Iterative modifications of several phylogenetic matrices in the last decades resulted in extensive genealogies of datasets that allow the evaluation of differences in the stability of results for alternative character weighting methods directly on empirical data. Each generation was compared against the most recent generation in each genealogy because it is assumed that it is the most comprehensive (higher sampling), revised (fewer misscorings) and complete (lower amount of missing data) matrix of the genealogy. The analyses were conducted on six different genealogies under EW and IW and extended implied weighting (EIW) with a range of concavity constant values (k) between 3 and 30. Pairwise comparisons between trees were conducted using Robinson-Foulds distances normalized by the total number of groups, distortion coefficient, subtree pruning and regrafting moves, and the proportional sum of group dissimilarities. The results consistently show that IW and EIW produce results more similar to those of the last dataset than EW in the vast majority of genealogies and for all comparative measures. This is significant because almost all of these matrices were originally analysed only under EW. Implied weighting and EIW do not outperform each other unambiguously. Euclidean distances based on a principal components analysis of the comparative measures show that different ranges of k-values retrieve the most similar results to the last generation in different genealogies. There is a significant positive linear correlation between the optimal k-values and the number of terminals of the last generations. This could be employed to inform about the range of k-values to be used in phylogenetic analyses based on matrix size but with the caveat that this emergent relationship still relies on a low sample size of genealogies.
Asunto(s)
Paleontología , Filogenia , Animales , Modelos Genéticos , Simulación por Computador , FósilesRESUMEN
Lagerpeton chanarensis is an early avemetatarsalian from the lower Carnian (lowermost Upper Triassic) levels of the Chañares Formation, La Rioja Province, Argentina. Lagerpeton and its kin were traditionally interpreted as dinosaur precursors of cursorial habits, with a bipedal posture and parasagittal gait. Some authors also speculated saltatorial capabilities for this genus. Recent analyses indicate that lagerpetids are early-diverging pterosauromorphs, a hypothesis that invites a review of most aspects of their anatomy and function. A revision of available specimens and additional preparation of previously known individuals indicate that Lagerpeton lacked a parasagittal gait and was probably a sprawling archosaur. This latter inference is based on the femoral head articulation with the acetabulum. The acetabular rim has a strongly laterally projected posteroventral antitrochanteric corner, which results in a position of the legs that recalls that of sprawling living reptiles, such as lizards, and departs from the parasagittally positioned limbs of dinosaurs. This may indicate that early pterosauromorphs had a sprawling posture of their hindlegs, casting doubts on the significance of bipedal posture and parasagittal gait for the radiation of early ornithodirans, given that both traits have been regarded as key features that triggered the ecological and evolutionary success of the clade. Our results bolster recent claims of a high ecomorphological diversity among early avemetatarsalians.
Asunto(s)
Dinosaurios , Lagartos , Animales , Filogenia , Fósiles , Evolución Biológica , Extremidad Inferior/anatomía & histología , Dinosaurios/anatomía & histología , Marcha , Lagartos/anatomía & histología , PosturaRESUMEN
The Chañares Formation (Ischigualasto-Villa Unión Basin) is worldwide known by its exquisitely preserved fossil record of latest Middle-to-early Late Triassic tetrapods, including erpetosuchids, "rauisuchians," proterochampsids, gracilisuchids, dinosauromorphs, pterosauromorphs, kannemeyeriiform dicynodonts, and traversodontid, chiniquodontid and probainognathid cynodonts, coming from the Tarjadia (bottom) and Massetognathus-Chanaresuchus (top) Assemblage Zones of its lower member. Regarding cynodonts, most of its profuse knowledge comes from the traditional layers discovered by Alfred Romer and his team in the 1960s that are now enclosed in the Massetognathus-Chanaresuchus Assemblage Zone (AZ). In this contribution we focus our study on the probainognathian cynodonts discovered in levels of the Tarjadia Assemblage Zone. We describe a new chiniquodontid cynodont with transversely broad postcanine teeth (Riojanodon nenoi gen. et sp. nov.) which is related to the genus Aleodon. In addition, the specimen CRILAR-Pv 567 previously referred to cf. Aleodon is here described, compared, and included in a phylogenetic analysis. It is considered as an indeterminate Aleodontinae nov., a clade here proposed to included chiniquodontids with transversely broad upper and lower postcanines, by having a cuspidated sectorial labial margin and a lingual platform that is twice broader than a lingual cingulum. Cromptodon mamiferoides, from the Cerro de Las Cabras Formation (Cuyo Basin), was also included in the phylogenetic analysis and recovered as an Aleodontinae. The new cynodont and the record of Aleodontinae indet. reinforce the faunal differentiation between the Tarjadia and Massetognathus-Chanaresuchus Assemblage Zones, in the lower member of the Chañares Formation, and inform on the diverse chiniquodontid clade with both sectorial and transversely broad postcanine teeth.
Asunto(s)
Fósiles , Filogenia , ArgentinaRESUMEN
Proterochampsidae is a clade of non-archosaurian archosauriforms restricted to the Middle to the Late Triassic of the Ischigualasto-Villa Unión Basin of Argentina and the Santa Maria Supersequence of Brazil. A reappraisal of proterochampsid specimens from the Brazilian Dinodontosaurus Assemblage Zone (AZ) of the Pinheiros-Chiniquá Sequence (late Ladinian-early Carnian) is presented here. One of the specimens was preliminary assigned to Chanaresuchus sp., whose type species comes from the Massetognathus-Chanaresuchus AZ of the Chañares Formation of Argentina. However, our revision indicates that it differs from Chanaresuchus, being more closely related to the middle-late Carnian Rhadinosuchus gracilis. We therefore propose the new taxon, Pinheirochampsa rodriguesi, to reallocate this specimen. Additionally, we present a revision of other putative Chanaresuchus occurrences in Brazil, including the only known specimen described for the Santacruzodon AZ (Santa Cruz do Sul Sequence; early Carnian), also proposing it as a new taxon: Kuruxuchampsa dornellesi. Both new species are characterized, among other features, by transverse expansion of the anterior end of the rostrum, similar to the condition present in Rhadinosuchus, but absent in Chanaresuchus, Gualosuchus, Pseudochampsa, and non-rhadinosuchine proterochampsids. These two new species expand the growing knowledge of the non-archosaurian archosauriform diversity during the Middle-Late Triassic in South America and enhance faunal and chronological comparisons between approximately coeval geological units between Argentina and Brazil.
Asunto(s)
Dinosaurios , Diente , Animales , Brasil , Fósiles , Argentina , Filogenia , Dinosaurios/anatomía & histologíaRESUMEN
The Gondwana formations exposed in the Pranhita-Godavari Valley of central India include Middle Triassic to Lower Jurassic continental deposits that provide essential information about the tetrapod assemblages of that time, documenting some of the oldest known dinosaurs and the first faunas numerically dominated by this group. The Upper Maleri Formation of the Pranhita-Godavari Basin preserves an early-middle Norian dinosaur assemblage that provides information about the early evolutionary history of this group in central-south Gondwana. This assemblage comprises sauropodomorph dinosaurs and an herrerasaurian, including two nominal species. Here, we describe in detail the anatomy of one of those early dinosaurs, the bagualosaurian sauropodomorph Jaklapallisaurus asymmetricus. The new anatomical information is used to investigate the position of the species in an updated quantitative phylogenetic analysis focused on early sauropodomorphs. The analysis recovered Jaklapallisaurus asymmetricus as a member of Unaysauridae, at the base of Plateosauria, together with Macrocollum itaquii and Unaysaurus tolentinoi from the early Norian of southern Brazil. This phylogenetic result indicates that the dispersal of early plateosaurian sauropodomorphs between the Southern Hemisphere and what nowadays is Europe would have occurred shortly after Ischigualastian times because of the extension of their ghost lineage. Thus, the presence of early plateosaurians in the early Norian of South America and India reduces a previously inferred diachrony between the biogeographic dispersals of theropods and sauropodomorphs during post-Ischigualastian times.
Asunto(s)
Dinosaurios , Animales , Filogenia , Dinosaurios/anatomía & histología , Osteología , Fósiles , Evolución Biológica , BrasilRESUMEN
Variations in the shape and size of teeth have been associated with changes in enamel ultrastructure across odontocetes. Characterizing these features in extinct taxa can elucidate their functional morphology and feeding strategy, while also shedding light into macroevolutionary patterns during the evolutionary history of cetaceans. This study aimed to (1) describe the enamel and dentine ultrastructure of the Early Miocene odontocetes Notocetus vanbenedeni and Phoberodon arctirostris from Patagonia (Argentina) and (2) quantify tooth and enamel ultrastructure morphological disparity among odontocetes. Enamel was predominantly prismatic, thin in the anterior tooth of N. vanbenedeni and P. arctirostris; whilst thick on the posterior tooth of N. vanbenedeni. Together with skull morphology, data suggests a raptorial feeding strategy for P. arctirostris and a combination suction feeding method for N. vanbenedeni. Statistical analyses supported these inferences, indicating that enamel characters are useful for paleoecological research. Morphological disparity analyses showed that extant odontocetes occupy a larger morphospace and have more disparate morphologies, whilst extinct odontocetes were more similar among each other than with the extant group. There was no clear phylogenetic-based grouping, suggesting that tooth and enamel ultrastructure disparity were mainly driven by ecological pressures. These results highlight enamel ultrastructure as a source for broader-scale paleoecological studies in cetaceans.
Asunto(s)
Evolución Biológica , Diente , Animales , Filogenia , Cetáceos/anatomía & histología , Esmalte Dental , FósilesRESUMEN
Proterosuchidae represents the oldest substantial diversification of Archosauromorpha and plays a key role in understanding the biotic recovery after the end-Permian mass extinction. Proterosuchidae was long treated as a wastebasket taxon, but recent revisions have reduced its taxonomic content to five valid species from the latest Permian of Russia and the earliest Triassic (Induan) of South Africa and China. In addition to these occurrences, several isolated proterosuchid bones have been reported from the Induan Panchet Formation of India for over 150 years. Following the re-study of historical specimens and newly collected material from this unit, we erect the new proterosuchid species Samsarasuchus pamelae, which is represented by most of the presacral vertebral column. We also describe cf. proterosuchid and proterosuchid cranial, girdle and limb bones that are not referred to Samsarasuchus pamelae. Phylogenetic analyses recovered Samsarasuchus pamelae within the new proterosuchid clade Chasmatosuchinae. The taxonomic diversity of Proterosuchidae is substantially expanded here, with at least 11 nominal species and several currently unnamed specimens, and a biogeographical range encompassing present-day South Africa, China, Russia, India, Brazil, Uruguay and Australia. This indicates a broader taxonomic, phylogenetic and biogeographic diversification of Proterosuchidae than previously thought in the aftermath of the end-Permian mass extinction.
RESUMEN
Dinosaurs and pterosaurs have remarkable diversity and disparity through most of the Mesozoic Era1-3. Soon after their origins, these reptiles diversified into a number of long-lived lineages, evolved unprecedented ecologies (for example, flying, large herbivorous forms) and spread across Pangaea4,5. Recent discoveries of dinosaur and pterosaur precursors6-10 demonstrated that these animals were also speciose and widespread, but those precursors have few if any well-preserved skulls, hands and associated skeletons11,12. Here we present a well-preserved partial skeleton (Upper Triassic, Brazil) of the new lagerpetid Venetoraptor gassenae gen. et sp. nov. that offers a more comprehensive look into the skull and ecology of one of these precursors. Its skull has a sharp, raptorial-like beak, preceding that of dinosaurs by around 80 million years, and a large hand with long, trenchant claws that firmly establishes the loss of obligatory quadrupedalism in these precursor lineages. Combining anatomical information of the new species with other dinosaur and pterosaur precursors shows that morphological disparity of precursors resembles that of Triassic pterosaurs and exceeds that of Triassic dinosaurs. Thus, the 'success' of pterosaurs and dinosaurs was a result of differential survival among a broader pool of ecomorphological variation. Our results show that the morphological diversity of ornithodirans started to flourish among early-diverging lineages and not only after the origins of dinosaurs and pterosaurs.
Asunto(s)
Dinosaurios , Filogenia , Reptiles , Animales , Pico/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Reptiles/anatomía & histología , Reptiles/clasificación , Cráneo/anatomía & histología , Fósiles , EsqueletoRESUMEN
The lower jaw of early tetrapods is composed of several intramembranous ossifications. However, a tendency toward the independent reduction of the number of bones has been observed in the mandible of mammals, lepidosaurs, turtles, crocodiles, and birds. Regarding archosaurs, the coronoid and prearticular bones are interpreted to be lost during the evolution of stem-birds and stem-crocodiles, respectively, but the homology of the post-dentary bones retained in living pseudosuchians remains unclear. Here, we combine paleontological and embryological evidence to explore in detail the homology of the crocodylian post-dentary bones. We study the mandible embryogenesis on a sample of 71 embryos of Caiman and compare this pattern with the mandibular transformations observed across pseudosuchian evolution. In the pre-hatching ontogeny of caimans, at least five intramembranous ossification centers are formed along the margins of the internal mandibular fenestra (perifenestral centers) and, subsequently, merge to form the coronoid (three intramembranous centers), angular (one intramembranous center), and articular (one intramembranous and one chondral center). In the fossil record, an independent prearticular is lost around the base of Mesoeucrocodylia (optimized as reappearing in Thalattosuchia if they are placed within Neosuchia), and the coronoid is apomorphically lost in notosuchians. The integration of embryological and paleontological data indicates that most perifenestral centers are involved in the origin of the prearticular of non-mesoeucrocodylian pseudosuchians. These centers are rearranged during the evolution to contribute to different post-dentary bones in mesoeucrocodylians bolstering the idea that the coronoid and the articular of Crocodylia are not completely homologous to those of other diapsids.
Asunto(s)
Caimanes y Cocodrilos/anatomía & histología , Fósiles/anatomía & histología , Mandíbula/anatomía & histología , Caimanes y Cocodrilos/embriología , Animales , Evolución Biológica , Maxilares/anatomía & histología , Mandíbula/embriologíaRESUMEN
Rhynchosaurs are bulky quadrupedal herbivores that achieved a cosmopolitan distribution during the Middle and Late Triassic. Rhynchosaurids are characterized by a pair of premaxillae modified into an edentulous beak that had a bone-to-bone occlusion with the tips of the dentaries, and a specialized masticatory apparatus composed of groove(s) on the maxilla and ridges(s) on the dentary. The Argentinian fossil record of rhynchosaurs is abundant, but only two nominal species have been named so far. One of them, the hyperodapedontine Hyperodapedon sanjuanensis, is the most abundant tetrapod of the Ischigualasto Formation of northwestern Argentina. However, the anatomy of H. sanjuanensis remains poorly studied. The repreparation and computed tomographic (CT) scanning of its holotypic skull (MACN-Pv 18185) allowed a detailed description of its anatomy. Among the novel anatomical data presented here, we provide the first tridimensional complete reconstruction of a rhynchosaurid palate. This structure is extremely complex in comparison to the plesiomorphic archosauromorph condition, and more data on other rhynchosaurid palates are needed to shed light on the sequence of character states acquisition that resulted in this peculiar anatomy. The presence of a pair of septomaxillae in H. sanjuanensis is the first report of these bones in a rhynchosaurid, and this new information allowed to identify septomaxillae also in the hyperodapedontines Teyumbaita sulcognathus and Hyperodapedon mariensis. The better understanding of the skull anatomy of the holotype of H. sanjuanensis is a first step towards an improved knowledge of the morphology and taxonomy of the South American rhynchosaurs.
Asunto(s)
Dinosaurios , Animales , Argentina , Dinosaurios/anatomía & histología , Fósiles , Osteología , Filogenia , Cráneo/anatomía & histologíaRESUMEN
Lewisuchus admixtus is an early dinosauriform described by Alfred Romer in 1972 on the basis of a single, incomplete skeleton, collected in lower Upper Triassic rocks of the renowned Chañares Formation, at the Los Chañares type-locality, La Rioja Province, north-western Argentina. Recent field explorations to the type-locality resulted in the discovery of two partial articulated skeletons, which provide significant novel information. The cranial bones, presacral series, femur, tibia, and proximal tarsals of the new specimens match the preserved overlapping anatomy of the holotype and previously referred specimens of L. admixtus, including the presence of unique combination of character states among dinosauriforms (anterior presacral column with additional ossification on the top of neural spines, dorsal neural spines fan-shaped, anterior surface of the astragalus with a dorsally curved groove, and an inflated area on the anterior portion of the medial surface of this bone). This new information improves our understanding of the anatomy and taxonomy of early dinosauriforms and reinforces the role of Argentinean beds on the study of the origin of dinosaurs.
Asunto(s)
Dinosaurios , Fósiles , Animales , Argentina , Evolución Biológica , Dinosaurios/anatomía & histología , Filogenia , Cráneo/anatomía & histologíaRESUMEN
Sauropodomorph dinosaurs were the dominant medium to large-sized herbivores of most Mesozoic continental ecosystems, being characterized by their long necks and reaching a size unparalleled by other terrestrial animals (> 60 tonnes). Our study of morphological disparity across the entire skeleton shows that during the Late Triassic the oldest known sauropodomorphs occupied a small region of morphospace, subsequently diversifying both taxonomically and ecologically, and shifting to a different and broader region of the morphospace. After the Triassic-Jurassic boundary event, there are no substancial changes in sauropodomorph morphospace occupation. Almost all Jurassic sauropodomorph clades stem from ghost lineages that cross the Triassic-Jurassic boundary, indicating that variations after the extinction were more related to changes of pre-existing lineages (massospondylids, non-gravisaurian sauropodiforms) rather than the emergence of distinct clades or body plans. Modifications in the locomotion (bipedal to quadrupedal) and the successive increase in body mass seem to be the main attributes driving sauropodomorph morphospace distribution during the Late Triassic and earliest Jurassic. The extinction of all non-sauropod sauropodomorphs by the Toarcian and the subsequent diversification of gravisaurian sauropods represent a second expansion of the sauropodomorph morphospace, representing the onset of the flourishing of these megaherbivores that subsequently dominated in Middle and Late Jurassic terrestrial assemblages.
Asunto(s)
Tamaño Corporal , Dinosaurios/anatomía & histología , Dinosaurios/crecimiento & desarrollo , Extinción Biológica , Fósiles , Animales , Evolución Biológica , Calibración , Ecología , Ecosistema , Locomoción , Paleontología , Filogenia , Análisis de RegresiónRESUMEN
Pterosaurs were the first vertebrates to evolve powered flight1 and comprised one of the main evolutionary radiations in terrestrial ecosystems of the Mesozoic era (approximately 252-66 million years ago), but their origin has remained an unresolved enigma in palaeontology since the nineteenth century2-4. These flying reptiles have been hypothesized to be the close relatives of a wide variety of reptilian clades, including dinosaur relatives2-8, and there is still a major morphological gap between those forms and the oldest, unambiguous pterosaurs from the Upper Triassic series. Here, using recent discoveries of well-preserved cranial remains, microcomputed tomography scans of fragile skull bones (jaws, skull roofs and braincases) and reliably associated postcrania, we demonstrate that lagerpetids-a group of cursorial, non-volant dinosaur precursors-are the sister group of pterosaurs, sharing numerous synapomorphies across the entire skeleton. This finding substantially shortens the temporal and morphological gap between the oldest pterosaurs and their closest relatives and simultaneously strengthens the evidence that pterosaurs belong to the avian line of archosaurs. Neuroanatomical features related to the enhanced sensory abilities of pterosaurs9 are already present in lagerpetids, which indicates that these features evolved before flight. Our evidence illuminates the first steps of the assembly of the pterosaur body plan, whose conquest of aerial space represents a remarkable morphofunctional innovation in vertebrate evolution.
Asunto(s)
Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Fósiles , Filogenia , Animales , Calibración , Cráneo/anatomía & histología , Factores de Tiempo , Alas de Animales/anatomía & histología , Microtomografía por Rayos XRESUMEN
Present knowledge of Late Triassic tetrapod evolution, including the rise of dinosaurs, relies heavily on the fossil-rich continental deposits of South America, their precise depositional histories and correlations. We report on an extended succession of the Ischigualasto Formation exposed in the Hoyada del Cerro Las Lajas (La Rioja, Argentina), where more than 100 tetrapod fossils were newly collected, augmented by historical finds such as the ornithosuchid Venaticosuchus rusconii and the putative ornithischian Pisanosaurus mertii. Detailed lithostratigraphy combined with high-precision U-Pb geochronology from three intercalated tuffs are used to construct a robust Bayesian age model for the formation, constraining its deposition between 230.2 ± 1.9 Ma and 221.4 ± 1.2 Ma, and its fossil-bearing interval to 229.20 + 0.11/- 0.15-226.85 + 1.45/- 2.01 Ma. The latter is divided into a lower Hyperodapedon and an upper Teyumbaita biozones, based on the ranges of the eponymous rhynchosaurs, allowing biostratigraphic correlations to elsewhere in the Ischigualasto-Villa Unión Basin, as well as to the Paraná Basin in Brazil. The temporally calibrated Ischigualasto biostratigraphy suggests the persistence of rhynchosaur-dominated faunas into the earliest Norian. Our ca. 229 Ma age assignment to Pi. mertii partially fills the ghost lineage between younger ornithischian records and the oldest known saurischians at ca. 233 Ma.
RESUMEN
The homology and evolution of the archosaur ankle is a controversial topic that has been deeply studied using evidence from both extinct and extant taxa. In early stem archosaurs, the astragalus and calcaneum form the ancestral proximal tarsus and a single ossification composes the centrale series. In more recent stem archosaurs, the centrale is incorporated to the proximal row of tarsals laterally contacting the astragalus. This bone is subsequently lost as an independent ossification before the last common ancestor of birds and crocodilians, but the evolutionary fate of this element remains mostly unexplored. Here, we integrate embryological and palaeontological data with morphogeometric analyses to test the hypothesis of loss of the centrale or, alternatively, its incorporation into the archosaurian astragalus. Our results support the latter hypothesis, indicating that the astragalus developed ancestrally from two ossification centres in stem archosaurs and that the supposed tibiale of bird embryos represents a centrale. This conclusion agrees with previous embryological studies that concluded that the tibiale never develops in diapsids.
Asunto(s)
Articulación del Tobillo/anatomía & histología , Tobillo/anatomía & histología , Fósiles/anatomía & histología , Caimanes y Cocodrilos/anatomía & histología , Animales , Evolución Biológica , Aves/anatomía & histología , Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Paleontología/métodos , Filogenia , Astrágalo/anatomía & histologíaRESUMEN
The lower Carnian levels of the Chañares Formation (Ischigualasto-Villa Unión Basin, La Rioja Province) have yielded some of the most informative dinosaur precursor species known so far. However, these species are based on partial skeletons that in several cases hamper the comparison between them because of the absence of overlapping bones. This has generated a contentious debate during the last 20 years about the synonymy between two of these species, Lewisuchus admixtus and Pseudolagosuchus major. Here, we describe a new dinosauriform partial skeleton (CRILAR-Pv 552) recently collected in the Chañares Formation that preserves previously unknown anatomical regions for the dinosaur precursors of this unit (e.g., premaxilla, inner ear, anterior zeugopodium) and allows comparisons with other dinosauriform specimens. CRILAR-Pv 552 is referred to Lewisuchus admixtus because it possesses a proportionally large skull, a laterally projected, shelf-like ridge on the jugal, and recurved, finely serrated middle-posterior maxillary and dentary teeth ankylosed to the bone, and the absence of a coracoid foramen. The new specimen preserves a dorsally bowed dentary with a lateroventral shelf that is identical to a dentary associated with the holotype of Lewisuchus admixtus. Additionally, the morphology of the new specimen is completely congruent with that of specimens of Pseudolagosuchus major, bolstering the hypothesis that the latter species is a subjective junior synonym of Lewisuchus admixtus. A preliminary phylogenetic analysis with updated scorings for Lewisuchus admixtus found this species at the base of Silesauridae. Anat Rec, 303:1393-1438, 2020. © 2019 American Association for Anatomy.
Asunto(s)
Evolución Biológica , Dinosaurios/anatomía & histología , Fósiles , Cráneo/anatomía & histología , Animales , Argentina , FilogeniaRESUMEN
Platyacrodus unicus Ameghino, 1935, was described as an enigmatic shark probably related to the clade Heterodontidae. This species was described based on a single, small crushing tooth-like element coming from the "Salamancan" (Danian) of the Western Río Chico locality, Chubut province, Patagonia, Argentina. The holotype and only known specimen was never figured and only briefly characterized by its original describer Florentino Ameghino. The finding of the original figures and holotype specimen allows for a re-evaluation of the taxonomic status of this species. Here, Platyacrodus unicus is reinterpreted as the carapace of a small retroplumid crab of the genus Costacopluma Collins Morris, 1975.
Asunto(s)
Braquiuros , Tiburones , Animales , Argentina , FósilesRESUMEN
Noasaurines form an enigmatic group of small-bodied predatory theropod dinosaurs known from the Late Cretaceous of Gondwana. They are relatively rare, with notable records in Argentina and Madagascar, and possible remains reported for Brazil, India, and continental Africa. In south-central Brazil, the deposits of the Bauru Basin have yielded a rich tetrapod fauna, which is concentrated in the Bauru Group. The mainly aeolian deposits of the Caiuá Group, on the contrary, bear a scarce fossil record composed only of lizards, turtles, and pterosaurs. Here, we describe the first dinosaur of the Caiuá Group, which also represents the best-preserved theropod of the entire Bauru Basin known to date. The recovered skeletal parts (vertebrae, girdles, limbs, and scarce cranial elements) show that the new taxon was just over 1 m long, with a unique anatomy among theropods. The shafts of its metatarsals II and IV are very lateromedially compressed, as are the blade-like ungual phalanges of the respective digits. This implies that the new taxon could have been functionally monodactyl, with a main central weight-bearing digit, flanked by neighbouring elements positioned very close to digit III or even held free of the ground. Such anatomical adaptation is formerly unrecorded among archosaurs, but has been previously inferred from footprints of the same stratigraphic unit that yielded the new dinosaur. A phylogenetic analysis nests the new taxon within the Noasaurinae clade, which is unresolved because of the multiple alternative positions that Noasaurus leali can acquire in the optimal trees. The exclusion of the latter form results in positioning the new dinosaur as the sister-taxon of the Argentinean Velocisaurus unicus.
Asunto(s)
Dinosaurios/anatomía & histología , Fósiles , Animales , Evolución Biológica , Brasil , Clima Desértico , Geografía , Geología , Paleontología , Filogenia , Cráneo/anatomía & histologíaRESUMEN
Caimanines are crocodylians currently restricted to South and Central America and the oldest members are from lower Palaeocene localities of the Salamanca Formation (Chubut Province, Argentina). We report here a new caimanine from this same unit represented by a skull roof and partial braincase. Its phylogenetic relationships were explored in a cladistic analysis using standard characters and a morphogeometric two-dimensional configuration of the skull roof. The phylogenetic results were used for an event-based supermodel quantitative palaeobiogeographic analysis. The new species is recovered as the most basal member of the South American caimanines, and the Cretaceous North American lineage 'Brachychampsa and related forms' as the most basal Caimaninae. The biogeographic results estimated north-central North America as the ancestral area of Caimaninae, showing that the Cretaceous and Palaeocene species of the group were more widespread than thought and became regionally extinct in North America around the Cretaceous-Palaeocene boundary. A dispersal event from north-central North America during the middle Late Cretaceous explains the arrival of the group to South America. The Palaeogene assemblage of Patagonian crocodylians is composed of three lineages of caimanines as a consequence of independent dispersal events that occurred between North and South America and within South America around the Cretaceous-Palaeogene boundary.
Asunto(s)
Caimanes y Cocodrilos/clasificación , Distribución Animal , Fósiles/anatomía & histología , Filogenia , Caimanes y Cocodrilos/anatomía & histología , Caimanes y Cocodrilos/fisiología , Animales , Argentina , Cráneo/anatomía & histologíaRESUMEN
One of the key faunal transitions in Earth history occurred after the Permo-Triassic mass extinction (ca 252.2 Ma), when the previously obscure archosauromorphs (which include crocodylians, dinosaurs and birds) become the dominant terrestrial vertebrates. Here, we place all known middle Permian-early Late Triassic archosauromorph species into an explicit phylogenetic context, and quantify biodiversity change through this interval. Our results indicate the following sequence of diversification: a morphologically conservative and globally distributed post-extinction 'disaster fauna'; a major but cryptic and poorly sampled phylogenetic diversification with significantly elevated evolutionary rates; and a marked increase in species counts, abundance, and disparity contemporaneous with global ecosystem stabilization some 5 million years after the extinction. This multiphase event transformed global ecosystems, with far-reaching consequences for Mesozoic and modern faunas.