RESUMEN
Leishmania braziliensis is an intracellular parasite that resides mostly in macrophages. Both the parasite genome and the clinical disease manifestations show considerable polymorphism. Clinical syndromes caused by L. braziliensis include localized cutaneous (CL), mucosal (ML), and disseminated leishmaniasis (DL). Our prior studies showed that genetically distinct L. braziliensis clades associate with different clinical types. Herein, we hypothesized that: (1) L. braziliensis induces changes in macrophage gene expression that facilitates infection; (2) infection of macrophages with strains associated with CL (clade B), ML (clade C), or DL (clade A) will differentially affect host cell gene expression, reflecting their different pathogenic mechanisms; and (3) differences between the strains will be reflected by differences in macrophage gene expression after initial exposure to the parasite. Human monocyte derived macrophages were infected with L. braziliensis isolates from clades A, B, or C. Patterns of gene expression were compared using Affymetrix DNA microarrays. Many transcripts were significantly decreased by infection with all isolates. The most dramatically decreased transcripts encoded proteins involved in signaling pathways, apoptosis, or mitochondrial oxidative phosphorylation. Some transcripts encoding stress response proteins were up-regulated. Differences between L. braziliensis clades were observed in the magnitude of change, rather than the identity of transcripts. Isolates from subjects with metastatic disease (ML and DL) induced a greater magnitude of change than isolates from CL. We conclude that L. braziliensis enhances its intracellular survival by inhibiting macrophage pathways leading to microbicidal activity. Parasite strains destined for dissemination may exert a more profound suppression than less invasive L. braziliensis strains that remain near the cutaneous site of inoculation.
RESUMEN
BACKGROUND: Previous findings indicate that susceptibility to Leishmania (Viannia) panamensis infection of monocyte-derived macrophages from patients and asymptomatically infected individuals were associated with the adaptive immune response and clinical outcome. METHODOLOGY/PRINCIPAL FINDINGS: To understand the basis for this difference we examined differential gene expression of human monocyte-derived macrophages following exposure to L. (V.) panamensis. Gene activation profiles were determined using macrophages from healthy volunteers cultured with or without stationary phase promastigotes of L. (V.) panamensis. Significant changes in expression (>1.5-fold change; p<0.05; up- or down-regulated) were identified at 0.5, 4 and 24 hours. mRNA abundance profiles varied over time, with the highest level of activation occurring at earlier time points (0.5 and 4 hrs). In contrast to observations for other Leishmania species, most significantly changed mRNAs were up- rather than down-regulated, especially at early time points. Up-regulated transcripts over the first 24 hours belonged to pathways involving eicosanoid metabolism, oxidative stress, activation of PKC through G protein coupled receptors, or mechanism of gene regulation by peroxisome proliferators via PPARα. Additionally, a marked activation of Toll-receptor mediated pathways was observed. Comparison with published microarray data from macrophages infected with L. (Leishmania) chagasi indicate differences in the regulation of genes involved in signaling, motility and the immune response. CONCLUSIONS: Results show that the early (0.5 to 24 hours) human monocyte-derived macrophage response to L. (Viannia) panamensis is not quiescent, in contrast to published reports examining later response times (48-96 hours). Early macrophage responses are important for the developing cellular response at the site of infection. The kinetics and the mRNA abundance profiles induced by L. (Viannia) panamensis illustrate the dynamics of these interactions and the distinct biologic responses to different Leishmania species from the outset of infection within their primary host cell.
Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Leishmania guyanensis/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Humanos , Análisis por Micromatrices , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Factores de TiempoRESUMEN
Visceral leishmaniasis (VL) in northeast Brazil is a disease caused by infection with the protozoan Leishmania chagasi. Infection leads to variable clinical outcomes ranging from asymptomatic infection to potentially fatal disease. Prior studies suggest the genetic background of the host contributes to the development of different outcomes after infection, although it is not known if ancestral background itself influences outcomes. VL is endemic in peri-urban areas around the city of Natal in northeast Brazil. The population of northeast Brazil is a mixture of distinct racial and ethnic groups. We hypothesized that some sub-populations may be more susceptible than others to develop different clinical outcomes after L. chagasi infection. Using microsatellite markers, we examined whether admixture of the population as a whole, or markers likely inherited from a distinct ethnic background, differed between individuals with VL, individuals with an asymptomatic infection, or individuals with no infection. There was no apparent significant difference in overall population admixture proportions among the three clinical phenotype groups. However, one marker on Chr. 22 displayed evidence of excess ancestry from putative ancestral populations among different clinical phenotypes, suggesting this region may contain genes determining the course of L. chagasi infection.
Asunto(s)
Leishmania/fisiología , Leishmaniasis Visceral/etnología , Leishmaniasis Visceral/genética , Animales , Brasil/etnología , Humanos , Leishmaniasis Visceral/parasitología , Repeticiones de MicrosatéliteRESUMEN
The protozoan Leishmania chagasi can cause disseminated, fatal visceral leishmaniasis (VL) or asymptomatic infection in humans. We hypothesized that host genetic factors contribute to this variable response to infection. A family study was performed in neighborhoods of endemicity for L. chagasi near Natal in northeastern Brazil. Study subjects were assessed for the presence of VL or asymptomatic infection, which was defined by a positive delayed-type hypersensitivity (DTH) skin test response to Leishmania antigen without disease symptoms. A genomewide panel of 385 autosomal microsatellite markers in 1254 subjects from 191 families was analyzed to identify regions of linkage. Regions with potential linkage to the DTH response on chromosomes 15 and 19, as well as a novel region on chromosome 9 with potential linkage to VL, were identified. Understanding the genetic factors that determine whether an individual will develop symptomatic or asymptomatic infection with L. chagasi may identify proteins essential for immune protection against this parasitic disease and reveal strategies for immunotherapy or prevention.