Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(34): 16107-16118, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39099555

RESUMEN

We demonstrate the first successful functionalization of epitaxial three-dimensional graphene with metal nanoparticles. The functionalization is obtained by immersing three-dimensional graphene in a nanoparticle colloidal solution. This method is versatile and demonstrated here for gold and palladium, but can be extended to other types of nanoparticles. We have measured the nanoparticle density on the top surface and in the porous layer volume by scanning electron microscopy and scanning transmission electron microscopy. The samples exhibit a wide coverage of nanoparticles with minimal clustering. We demonstrate that high-quality graphene promotes the functionalization, leading to higher nanoparticle density both on the surface and in the pores. X-ray photoelectron spectroscopy shows the absence of contamination after the functionalization process. Moreover, it confirms the thermal stability of the Au- and Pd-functionalized three-dimensional graphene up to 530 °C. Our approach opens new avenues for utilizing three-dimensional graphene as a versatile platform for catalytic applications, sensors, and energy storage and conversion.

2.
Chem Mater ; 36(14): 6865-6876, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39070672

RESUMEN

Self-assembled magnetic nanoparticles offer next-generation materials that allow harnessing of their physicochemical properties for many applications. However, how three-dimensional nanoassemblies of magnetic nanoparticles can be synthesized in one-pot synthesis without excessive postsynthesis processes is still a bottleneck. Here, we propose a panel of small organic molecules that glue nanoparticle crystallites during the growth of particles to form large nanoassembled nanoparticles (NANs). We find that both carbonyl and carboxyl functional groups, presenting in benzaldehyde and benzoic acid, respectively, are needed to anchor with metal ions, while aromatic rings are needed to create NANs through π-π stacking. When benzyl alcohol, lacking carbonyl and carboxyl groups, is employed, no NANs are formed. NANs formed by benzoic acid reveal a unique combination of high magnetization and coercivity, whereas NANs formed by benzaldehyde show the largest exchange bias reported in nanoparticles. Surprisingly, our NANs show unconventional colloidal stability due to their unique nanoporous architectures.

5.
Small ; 19(12): e2206712, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36650930

RESUMEN

Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but achieving finite 3D structures with a controlled morphology through this assembly mode is still rare. Here, a spherical peptide-gold superstructure (PAuSS) is used as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D-branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantles upon SDS concentration gradient equilibration over time in the sample solution, leading to NPs disassembly and regression to PAuSS. Notably, BAuNS assembly and disassembly promotes temporary interparticle plasmonic coupling, leading to reversible and tunable changes of their plasmonic properties, a highly desirable behavior in the development of optoelectronic nanodevices.

6.
Nano Lett ; 23(1): 58-65, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36584282

RESUMEN

Immunoassays exploiting magnetization dynamics of magnetic nanoparticles are highly promising for mix-and-measure, quantitative, and point-of-care diagnostics. However, how single-core magnetic nanoparticles can be employed to reduce particle concentration and concomitantly maximize assay sensitivity is not fully understood. Here, we design monodisperse Néel and Brownian relaxing magnetic nanocubes (MNCs) of different sizes and compositions. We provide insights into how to decouple physical properties of these MNCs to achieve ultrahigh sensitivity. We find that tricomponent-based Zn0.06Co0.80Fe2.14O4 particles, with out-of-phase to initial magnetic susceptibility χ″/χ0 ratio of 0.47 out of 0.50 for magnetically blocked ideal particles, show the ultrahigh magnetic sensitivity by providing a rich magnetic particle spectroscopy (MPS) harmonics spectrum despite bearing lower saturation magnetization than dicomponent Zn0.1Fe2.9O4 having high saturation magnetization. The Zn0.06Co0.80Fe2.14O4 MNCs, coated with catechol-based poly(ethylene glycol) ligands, measured by our benchtop MPS show 3 orders of magnitude better particle LOD than that of commercial nanoparticles of comparable size.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Nanopartículas de Magnetita/química , Magnetismo , Campos Magnéticos , Fenómenos Físicos , Análisis Espectral , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA