Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 226: 119259, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36323202

RESUMEN

Activated sludge from municipal wastewater treatment processes can be used directly for the production of biodegradable polyesters from the family of polyhydroxyalkanoates (PHAs). However, municipal activated sludge typically cannot accumulate PHAs to very high levels and often low yields of polymer produced on substrate are observed. In the present work, it was found that the presence of calcium promotes selective growth and enrichment of the PHA-storing biomass fraction and significantly improved both PHA contents and yields. Calcium addition resulted in PHA contents of 0.60 ± 0.03 gPHA/gVSS and average PHA yields on substrate of 0.49 ± 0.03 gCODPHA/gCODHAc compared to 0.35 ± 0.01 gPHA/gVSS and 0.19 ± 0.01 gCODPHA/gCODHAc without calcium addition. After 48 h, three times more PHA was produced compared to control experiments without calcium addition. Higher PHA content and selective biomass production is proposed to be a consequence of calcium dependent increased levels of passive acetate uptake. Such more efficient substrate uptake could be related to a formation of calcium acetate complexes. Findings lead to bioprocess methods to stimulate a short-term selective growth of PHA-storing microorganisms and this enables improvements to the techno-economic feasibility for municipal waste activated sludge to become a generic resource for industrial scale PHA production.


Asunto(s)
Polihidroxialcanoatos , Purificación del Agua , Aguas del Alcantarillado/química , Biomasa , Calcio , Reactores Biológicos
2.
Bioresour Technol ; 364: 128035, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182016

RESUMEN

The developments of mixed culture polyhydroxyalkanoate production has been directed to maximize the biomass PHA content with limited attention to polymer quality. Direct comparison of PHA accumulation literature is challenging, and even regularly contradicting in reported results, due to underlying differences that are not well expressed. A study was undertaken to systematically compare the commonly reported process conditions for PHA accumulation by full-scale municipal activated sludge. A biomass acclimation step combined with a pulse-wise feeding strategy resulted in maximum average PHA contents and product yields. pH control and active nitrification did not result in observable effects on the PHA productivity. Under these conditions a high molecular weight polymer (1536 ± 221 kDa) can be produced. Polymer extraction recoveries were influenced by the PHA molecular weight. A standard protocol for an activated sludge PHA accumulation test including downstream processing and standardized extraction has been developed and is available as supplementary material.


Asunto(s)
Polihidroxialcanoatos , Aguas del Alcantarillado , Nitrificación , Biomasa , Peso Molecular , Reactores Biológicos
3.
Environ Sci Technol ; 56(16): 11729-11738, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35900322

RESUMEN

Municipal activated sludge can be used for polyhydroxyalkanoate (PHA) production, when supplied with volatile fatty acids. In this work, standardized PHA accumulation assays were performed with different activated sludge to determine (1) the maximum biomass PHA content, (2) the degree of enrichment (or volume-to-volume ratio of PHA-accumulating bacteria with respect to the total biomass), and (3) the average PHA content in the PHA-storing biomass fraction. The maximum attained biomass PHA content with different activated sludge ranged from 0.18 to 0.42 gPHA/gVSS, and the degree of enrichment ranged from 0.16 to 0.51 volume/volume. The average PHA content within the PHA-accumulating biomass fraction was relatively constant and independent of activated sludge source, with an average value of 0.58 ± 0.07 gPHA/gVSS. The degree of enrichment for PHA-accumulating bacteria was identified as the key factor to maximize PHA content when municipal activated sludge is directly used for PHA accumulation. Future optimization should focus on obtaining a higher degree of enrichment of PHA-accumulating biomass, either through selection during wastewater treatment or by selective growth during PHA accumulation. A PHA content in the order of 0.6 g PHA/g VSS is a realistic target to be achieved when using municipal activated sludge for PHA production.


Asunto(s)
Polihidroxialcanoatos , Purificación del Agua , Bacterias , Biomasa , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles , Aguas del Alcantarillado/microbiología
4.
Bioresour Technol ; 337: 125420, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34175767

RESUMEN

Microbial community-based polyhydroxyalkanoate (PHA) production has been demonstrated repeatedly at pilot scale. Ammonium, normally present in waste streams, might be oxidized by nitrifying bacteria resulting in additional aeration energy demand. The use of low dissolved oxygen (DO) concentrations allowed to reduce nitrifying rates by up to 70% compared to non-oxygen limiting conditions. At lower DO concentrations nitrate was used as alternative electron acceptor for PHA production and therefore, a constant PHA production rate could only be maintained if nitrate was sufficiently available. An optimum DO concentration (0.9 mgO2/L) was found for which nitrification was mitigated but also exploited to supply requisite heterotrophic nitrate requirements that maintained maximum PHA production rates. PHA accumulations with such DO control was estimated to reduce oxygen demand by about 18%. This work contributes to establish fundamental insight towards viable industrial practice with the control and exploitation of nitrifying bacteria in microbial community-based PHA production.


Asunto(s)
Microbiota , Polihidroxialcanoatos , Reactores Biológicos , Desnitrificación , Nitrificación , Nitrógeno
5.
Bioresour Technol ; 327: 124790, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33582521

RESUMEN

Conversion of organic waste and wastewater to polyhydroxyalkanoates (PHAs) offers a potential to recover valuable resources from organic waste. Microbial community-based PHA production systems have been successfully applied in the last decade at lab- and pilot-scales, with a total of 19 pilot installations reported in the scientific literature. In this review, research at pilot-scale on microbial community-based PHA production is categorized and subsequently analyzed with focus on feedstocks, enrichment strategies, yields of PHA on substrate, biomass PHA content and polymer characterization. From this assessment, the challenges for further scaling-up of microbial community-based PHA production are identified.


Asunto(s)
Microbiota , Polihidroxialcanoatos , Biomasa , Reactores Biológicos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA