Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Oncol ; 12: 883195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646693

RESUMEN

The treatment of advanced renal cell carcinoma remains a challenge. To develop novel therapeutic approaches, primary cell cultures as an in vitro model are considered more representative than commercial cell lines. In this study, we analyzed the gene expression of previously established primary cell cultures of clear cell renal cell carcinoma by bulk (3'm)RNA sequencing and compared it to the tissue of origin. The objectives were the identification of dysregulated pathways under cell culture conditions. Furthermore, we assessed the suitability of primary cell cultures for studying crucial biological pathways, including hypoxia, growth receptor signaling and immune evasion. RNA sequencing of primary cell cultures of renal cell carcinoma and a following Enrichr database analysis revealed multiple dysregulated pathways under cell culture conditions. 444 genes were significantly upregulated and 888 genes downregulated compared to the tissue of origin. The upregulated genes are crucial in DNA repair, cell cycle, hypoxia and metabolic shift towards aerobic glycolysis. A downregulation was observed for genes involved in pathways of immune cell differentiation and cell adhesion. We furthermore observed that 7275 genes have a similar mRNA expression in cell cultures and in tumor tissue, including genes involved in the immune checkpoint signaling or in pathways responsible for tyrosine kinase receptor resistance. Our findings confirm that primary cell cultures are a representative tool for specified experimental approaches. The results presented in this study give further valuable insights into the complex adaptation of patient-derived cells to a new microenvironment, hypoxia and other cell culture conditions, which are often neglected in daily research, and allow new translational and therapeutic approaches.

2.
Int J Oncol ; 60(2)2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35059737

RESUMEN

Low expression levels of the E3 ubiquitin­protein ligase Parkin (PARK2) are exhibited in several cancer entities, including clear cell renal cell carcinoma (ccRCC), and are associated with poor prognosis; however, PARK2 can also function as a tumor suppressor gene. The aim of the present study was to thoroughly investigate the effects of PARK2 overexpression in ccRCC cell lines and to determine its effects on malignancy by conducting functional assays such as cell cycle analysis, apoptosis analysis, migration and invasion assays. Furthermore, liquid chromatography­mass spectrometry was used to decipher potential targets of PARK2 that may influence the behavior of ccRCC tumor cells. In addition, ccRCC tumor tissues from a patient cohort were examined in tissue microarrays to find correlations between different clinical parameters. In the present study, it was demonstrated that the induction of PARK2 resulted in a less aggressive phenotype, as indicated by lower migration and invasion in ccRCC cell lines. Mass spectrometry revealed decreased levels of 29 proteins in cells with PARK2 overexpression, including CDC28 protein kinase regulatory subunit 2 (CKS2), which is highly expressed in numerous types of cancer. The link between the function of PARK2 as an E3 ubiquitin ligase and the low expression levels of CKS2 was investigated by mutating the catalytic domain of the PARK2 gene, and it was found that the effect of decreased migration was abolished in 786­O and RCC­MH ccRCC cell lines. CKS2 silencing decreased migratory ability of the cells. Furthermore, it was revealed that high CKS2 levels are associated with high tumor grading in patient samples and lower patient survival. In conclusion, the results from the present study indicated that PARK2 may signal via CKS2 to affect tumor behavior. In consequence, CKS2 may be a biomarker in ccRCC and may also serve as potential target for ccRCC therapy.


Asunto(s)
Quinasas CDC2-CDC28/efectos de los fármacos , Carcinoma de Células Renales/tratamiento farmacológico , Proteínas de Ciclo Celular/efectos de los fármacos , Ubiquitina-Proteína Ligasas/farmacología , Quinasas CDC2-CDC28/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Progresión de la Enfermedad , Humanos , Ubiquitina-Proteína Ligasas/administración & dosificación , Ubiquitina-Proteína Ligasas/metabolismo
3.
Sci Rep ; 10(1): 18857, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139776

RESUMEN

The aim of this study was to investigate the mitophagy-related genes PINK1 and PARK2 in papillary renal cell carcinoma and their association with prognosis. In silico data of PINK1 and PARK2 were analyzed in TCGA cohorts of papillary renal cell carcinoma comprising 290 tumors and 33 corresponding non-neoplastic renal tissues. Protein expression data from a cohort of 95 papillary renal cell carcinoma patients were analyzed and associated with clinical-pathological parameters including survival. PINK1 and PARK2 were significantly downregulated in papillary renal cell carcinoma at transcript and protein levels. Reduced transcript levels of PINK1 and PARK2 were negatively associated with overall survival (p < 0.05). At the protein level, PARK2 and PINK1 expression were positively correlated (correlation coefficient 0.286, p = 0.04) and reduced PINK1 protein expression was prognostic for shorter survival. Lower PINK1 protein levels were found in tumors with metastases at presentation and in tumors of higher pT-stages. The multivariate analysis revealed mRNA expression of PINK1 and PARK2 as well as PINK1 protein expression as independent prognostic factors for shorter overall survival. The downregulation of PINK1 is a strong predictor of poor survival in papillary renal cell carcinoma. Immunohistochemical PINK1 expression in resected pRCC should be considered as an additional prognostic marker for routine practice.


Asunto(s)
Carcinoma de Células Renales/genética , Mitofagia/genética , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/patología , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
4.
J Cancer Res Clin Oncol ; 146(9): 2255-2265, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32533404

RESUMEN

PURPOSE: To investigate the synergistic effect of glycolysis inhibition on therapy answer to tyrosine kinase inhibitors in renal carcinoma. METHODS: Primary cell cultures from 33 renal tumors including clear cell RCC (ccRCC), papillary RCC and the rare subtype chromophobe RCC as well as two metastases of ccRCC were obtained and cultivated. The patient-derived cells were verified by immunohistochemistry. CcRCC cells were further examined by exon sequencing of the von Hippel-Lindau gene (VHL) and by RNA-sequencing. Next, cell cultures of all subtypes of RCC were exposed to increasing doses of various tyrosine kinase inhibitors (axitinib, cabozantinib and pazopanib) and the glycolysis inhibitor 2-deoxy-D-glucose, alone or combined. CellTiter-Glo® Luminescence assay and Crystal Violet staining were used to assess the inhibition of glycolysis and the viability of the cultured primary cells. RESULTS: The cells expressed characteristic tissue markers and, in case of ccRCC cultures, the VHL status of the tumor they derived from. An upregulation of HK1, PFKP and SLC2A1 was observed, while components of the respiratory chain were downregulated, confirming a metabolic shift towards aerobic glycolysis. The tumors displayed variable individual responses for the therapeutics. All subtypes of RCC were susceptible to cabozantinib treatment indicated by decreased proliferation. Adding 2-deoxy-D-glucose to tyrosine kinase inhibitors decreased ATP production and increased the susceptibility of ccRCC to pazopanib treatment. CONCLUSION: This study presents a valuable tool to cultivate even uncommon and rare renal cancer subtypes and allows testing of targeted therapies as a personalized approach as well as testing new therapies such as glycolysis inhibition in an in vitro model.


Asunto(s)
Carcinoma de Células Renales/tratamiento farmacológico , Desoxiglucosa/metabolismo , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias Renales/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Anciano , Anciano de 80 o más Años , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Renales/metabolismo , Masculino , Persona de Mediana Edad , Cultivo Primario de Células/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA