RESUMEN
HPV oncoproteins can modulate DNMT1 expression and activity, and previous studies have reported both gene-specific and global DNA methylation alterations according to HPV status in head and neck cancer. However, validation of these findings and a more detailed analysis of the transposable elements (TEs) are still missing. Here we performed pyrosequencing to evaluate a 5-CpG methylation signature and Line1 methylation in an oropharyngeal squamous cell carcinoma (OPSCC) cohort. We further evaluated the methylation levels of the TEs, their correlation with gene expression and their impact on overall survival (OS) using the TCGA cohort. In our dataset, the 5-CpG signature distinguished HPV-positive and HPV-negative OPSCC with 66.67% sensitivity and 84.33% specificity. Line1 methylation levels were higher in HPV-positive cases. In the TCGA cohort, Line1, Alu and long terminal repeats (LTRs) showed hypermethylation in a frequency of 60.5%, 58.9% and 92.3%, respectively. ZNF541 and CCNL1 higher expression was observed in HPV-positive OPSCC, correlated with lower methylation levels of promoter-associated Alu and LTR, respectively, and independently associated with better OS. Based on our findings, we may conclude that a 5-CpG methylation signature can discriminate OPSCC according to HPV status with high accuracy and TEs are differentially methylated and may regulate gene expression in HPV-positive OPSCC.
RESUMEN
INTRODUCTION AND AIM: Epigenetic alterations play an essential role in cancer onset and progression, thus studies of drugs targeting the epigenetic machinery are a principal concern for cancer treatment. Here, we evaluated the potential of the combination of the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5aza-dC) and the pan-deacetylase inhibitor Trichostatin A (TSA), at low cytotoxic concentrations, to modulate the canonical Wnt/ß-catenin pathway in liver cancer cells. MATERIAL AND METHODS: Pyrosequencing was used for DNA methylation analyses of LINE-1 sequences and the Wnt/ß-catenin pathway antagonist DKK3, SFRP1, WIF1 and CDH1. qRT-PCR was employed to verify the expression of the antagonist. Pathway regulation were evaluated looking at the expression of ß-catenin and E-cadherin by confocal microscopy and the antitumoral effects of the drugs was studied by wound healing and clonogenic assays. RESULTS: Our result suggest that 5aza-dC and TSA treatments were enough to induce a significant expression of the pathway antagonists, decrease of ß-catenin protein levels, re-localization of the protein to the plasma membrane, and pathway transcriptional activity reduction. These important effects exerted an antitumoral outcome shown by the reduction of the migration and clonogenic capabilities of the cells. CONCLUSION: We were able to demonstrate Wnt/ ß-catenin pathway modulation through E-cadherin up-regulation induced by 5aza-dC and TSA treatments, under an activation-pathway background, like CTNNB1 and TP53 mutations. These findings provide evidences of the potential effect of epigenetic modifier drugs for liver cancer treatment. However, further research needs to be conducted, to determine the in vivo potential of this treatment regimen for the management of liver cancer.