Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanophotonics ; 13(18): 3385-3393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39185486

RESUMEN

Third-harmonic generation (THG) in silicon nitride waveguides is an ideal source of coherent visible light, suited for ultrafast pulse characterization, telecom signal monitoring and self-referenced comb generation due to its relatively large nonlinear susceptibility and CMOS compatibility. We demonstrate third-harmonic generation in silicon nitride waveguides where a fundamental transverse mode at 1,596 nm is phase-matched to a TM02 mode at 532 nm, confirmed by the far-field image. We experimentally measure the waveguide width-dependent phase-matched wavelength with a peak-power-normalized conversion efficiency of 5.78 × 10-7 %/W2 over a 660-µm-long interaction length.

2.
Micromachines (Basel) ; 13(7)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35888808

RESUMEN

Practical applications implementing integrated photonic circuits can benefit from nonlinear optical functionalities such as wavelength conversion, all-optical signal processing, and frequency-comb generation, among others. Numerous nonlinear waveguide platforms have been explored for these roles; the group of materials capable of combining both passive and active functionalities monolithically on the same chip is III-V semiconductors. AlGaAs is the most studied III-V nonlinear waveguide platform to date; it exhibits both second- and third-order optical nonlinearity and can be used for a wide range of integrated nonlinear photonic devices. In this review, we conduct an extensive overview of various AlGaAs nonlinear waveguide platforms and geometries, their nonlinear optical performances, as well as the measured values and wavelength dependencies of their effective nonlinear coefficients. Furthermore, we highlight the state-of-the-art achievements in the field, among which are efficient tunable wavelength converters, on-chip frequency-comb generation, and ultra-broadband on-chip supercontinuum generation. Moreover, we overview the applications in development where AlGaAs nonlinear functional devices aspire to be the game-changers. Among such applications, there is all-optical signal processing in optical communication networks and integrated quantum photonic circuits.

3.
Phys Rev Lett ; 128(20): 203902, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35657860

RESUMEN

The utility of all parametric nonlinear optical processes is hampered by phase-matching requirements. Quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have all been developed to address this constraint, but the methods demonstrated to date suffer from the inconvenience of only being phase matched for a single, specific arrangement of beams, typically copropagating, resulting in cumbersome experimental configurations and large footprints for integrated devices. Here, we experimentally demonstrate that these phase-matching requirements may be satisfied in a parametric nonlinear optical process for multiple, if not all, configurations of input and output beams when using low-index media. Our measurement constitutes the first experimental observation of direction-independent phase matching for a medium sufficiently long for phase matching to be relevant. We demonstrate four-wave mixing from spectrally distinct co- and counterpropagating pump and probe beams, the backward generation of a nonlinear signal, and excitation by an out-of-plane probe beam. These results explicitly show that the unique properties of low-index media relax traditional phase-matching constraints, which can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, thus adding to the established exceptional properties of low-index materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA