Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Turk J Chem ; 44(1): 74-86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488144

RESUMEN

Three new 2-component unsubstituted ( 4P ), diiodo- ( 5P ), and dibromo- ( 6P ) distyryl-BODIPY-bridged cyclotriphosphazene dimers were designed and synthesized. The newly synthesized BODIPY-cyclotriphosphazene systems were characterized by 1 H, 13 C, and 31 P NMR spectroscopy. The photophysical properties of the distryl-BODIPYs (4-6) and BODIPY-cyclotriphosphazene dyads ( 4P - 6P ) were studied by UV-Vis absorption and fluorescence emission spectroscopy. In these derivatives, the bino-type cyclotriphosphazene derivative bearing unsubstituted BODIPY unit 4P exhibited high fluorescence and no singlet oxygen generation due to the lack of spin converter. The attachment of heavy atoms (iodine and bromine) enabled the production of singlet oxygen. The bino-type BODIPY-cyclotriphosphazenes ( 5P and 6P ) were also used as triplet photosensitizers in the photooxidation of 1,3-diphenylisobenzofuran to endoperoxide via generation of the singlet oxygen in dichloromethane. The singlet oxygen production of these compounds was also investigated via a direct method and produced a singlet oxygen phosphorescence peak at 1270 nm.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 222: 117232, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31177003

RESUMEN

Perylenebisimide-cyclotriphosphazene based inorganic-organic system was synthesized by a multistep procedure. The substitution reaction of asymmetric perylenebisimide (PBI) derivative with the hexachloroyclotriphosphazene (trimer) resulted in the formation of fully PBI decorated cyclotriphosphazene (5). The identity of newly synthesized compound (5) was confirmed by using 31P, 1H and 13C NMR spectroscopies and mass spectrometry. The photophysical (UV- Vis absorption, fluorescence emission, fluorescence lifetime and fluorescence quantum yield) and photochemical (the singlet oxygen generation, and photostability) properties of this conjugate were investigated as novel heavy atom free triplet photosensitizer. The singlet oxygen quantum yield of the PBI-cyclotriphosphazene (5) was calculated to be 0.86 which is good for a heavy atom free triplet photosensitizer. These results will add to the development of cyclotriphosphazene based heavy atom free singlet oxygen triplet photosensitizer systems for applications in organic oxygenation reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA