Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(8): 5081-5095, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36777934

RESUMEN

The synthesis and characterization of polydopamine (PDA) using dopamine (DA) as the monomer and (hydroxymethyl)aminomethane (TRIS) as the oxidant is studied. The effect of temperature and TRIS concentration on the kinetics of dopamine polymerization is evaluated, and the kinetic parameters are also calculated. Three TRIS concentrations are used to assess their effect on DA polymerization kinetics. The reaction at 1.5 mmol of TRIS shows a sustained increase of the rate constant with temperature from 2.38 × 10-4 to 5.10 × 10-4 when the temperature is increased from 25 to 55 °C; however, not all reactions follow an Arrhenius law. In addition, the correlation between the synthesis parameters and morphological, structural, and thermal properties of polydopamine is established. The morphology of the PDA particles is evaluated by Scanning Electron Microscopy (SEM), the relationships between the diameter, distribution size, and the rate constant. Thermal characterization by Differential Scanning Calorimetry (DSC) shows an endothermic transition around 130 °C associated with the melting of PDA's regular structure. It is supported by structural studies, such as infrared and Raman spectroscopy and X-ray Diffraction (XRD), by observing a broad peak at 23.1° (2θ) that fits with a graphitic-like structure of PDA.

2.
Biomed Mater Eng ; 34(5): 399-412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36502300

RESUMEN

BACKGROUND: Polymerization conditions affect the physical-mechanical properties of acrylic resins used for craniofacial prostheses. OBJECTIVE: The aim of this study was to evaluate the effect of microwave polymerization on the thermomechanical properties and surface morphology of ocular prostheses fabricated with polymethyl methacrylate (PMMA). METHODS: PMMA discs were polymerized with microwave energy and with conventional heat polymerization (CHP) method. Ocular prostheses were fabricated to determine whether there were changes according to the polymerization method. The surface morphology and roughness were observed under SEM and AFM. The Vickers Hardness number (VHN) and flexural strength were measured. Thermal properties were evaluated with TGA/DSC, and chemical composition with FTIR. RESULTS: The PMMA acrylic resin polymerized with microwave energy showed a smooth surface with some relief areas. In the internal surface of the ocular prosthesis with microwave energy the PMMA is more compact. The mean roughness values were higher and statistically significant with CHP (P < 0.05), while the surface hardness and flexural strength were higher with microwave energy (P < 0.05). CONCLUSION: There were no changes in the calorimetry with either method, TGA showed an exothermic peak around 120 °C with CHP method. PMMA polymerized with microwave energy improved the mechanical and surface properties of the ocular prostheses.


Asunto(s)
Resinas Acrílicas , Polimetil Metacrilato , Polimetil Metacrilato/química , Polimerizacion , Resinas Acrílicas/química , Microondas , Ensayo de Materiales , Propiedades de Superficie , Dureza , Bases para Dentadura
3.
J Mater Sci Mater Med ; 32(5): 56, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33961138

RESUMEN

The local administration of analgesic combinations by means of degradable polymeric drug delivery systems is an alternative for the management of postoperative pain. We formulated a Tramadol-Dexketoprofen combination (TDC) loaded in poly(vinyl alcohol) (PVA) film. Films were prepared by the solvent casting method using three different molecular weights of PVA and crosslinking those films with citric acid, with the objective of controlling the drug release rate, which was evaluated by UV-vis spectrometry. Non-crosslinked PVA films were also evaluated in the experiments. Differential scanning calorimetry (DSC) analysis of samples corroborated the crosslinking of PVA by the citric acid. Blank and loaded PVA films were tested in vitro for its impact on blood coagulation prothrombin time (PT) and partial thromboplastin time (PTT). The swelling capacity was also evaluated. Crosslinked PVA films of higher-molecular weight showed a prolonged release rate compared with that of the lower-molecular-weight films tested. Non-crosslinked PVA films released 11-14% of TDC. Crosslinked PVA films released 80% of the TDC loaded (p < 0.05). This suggests that crosslinking films can modify the drug release rate. The blank and loaded PVA films induced PT and PTT in the normal range. The results showed that the polymeric films evaluated here have the appropriate properties to allow films to be placed directly on surgical wounds and have the capacity for controlled drug release to promote local analgesia for the control of postoperative pain.


Asunto(s)
Analgésicos Opioides/química , Antiinflamatorios no Esteroideos/química , Sistemas de Liberación de Medicamentos , Cetoprofeno/química , Alcohol Polivinílico , Tramadol/química , Adulto , Analgésicos Opioides/administración & dosificación , Antiinflamatorios no Esteroideos/administración & dosificación , Preparaciones de Acción Retardada , Combinación de Medicamentos , Liberación de Fármacos , Humanos , Cetoprofeno/administración & dosificación , Masculino , Membranas Artificiales , Tiempo de Tromboplastina Parcial , Tiempo de Protrombina , Espectroscopía Infrarroja por Transformada de Fourier , Tramadol/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA