RESUMEN
Many clonal plants produce vegetative recruits that remain connected to the parent plant. Such connections permit resource sharing among ramets, explaining the high survival rates of vegetative recruits during establishment under suboptimal conditions for sexual regeneration. We propose that differences in the regeneration niches of sexual and vegetative recruits reflect different physiological adjustments caused by parental supply of resources to the ramets. We conducted ecophysiological measurements in saplings and root suckers of Eucryphia cordifolia Cav., a tree species of the temperate rainforest of southern South America. We compared the following traits of saplings and suckers: gas exchange at the leaf level, crown architecture, daily crown carbon balance, biomass allocation to above-ground tissues (leaf-to-stem mass ratio, leaf mass area and leaf area ratio), xylem anatomy traits (lumen vessel fraction, vessel density and size) and stem ring width. We also correlated the growth rates of saplings and suckers with relevant environmental data (light and climate). Saplings showed morphological, architectural and physiological traits that enhance daily crown carbon balance and increase water-use efficiency, in order to supply their growth demands while minimizing water loss per unit of carbon gained. The radial growth of saplings diminished under dry conditions, which suggests a strong stomatal sensitivity to water availability. Suckers have low stomatal conductance, likely because the carbon supplied by the parent plant diminishes the necessity of high rates of photosynthesis. The low responsiveness of sucker growth to temporal changes in water availability also supports the existence of parental supply. The physiological differences between sexual and vegetative recruits satisfactorily explain the ecological niche of E. cordifolia, with saplings restricted to more closed and humid sites.
Asunto(s)
Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Árboles/fisiología , Fotosíntesis/genética , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Transpiración de Plantas/genética , Transpiración de Plantas/fisiología , Árboles/metabolismo , Agua/metabolismo , Xilema/metabolismo , Xilema/fisiologíaRESUMEN
Eucryphia cordifolia Cav. is a long-lived evergreen tree species, commonly found as a canopy emergent tree in the Chilean temperate rain forest. This species displays successive leaf cohorts throughout the entire growing season. Thus, full leaf expansion occurs under different environmental conditions during growing such as air temperature, vapor pressure deficit and the progress of moderate water stress (WS). These climate variations can be reflected as differences in anatomical and physiological characteristics among leaf cohorts. Thus, we investigated the potential adaptive role of different co-existing leaf cohorts in seedlings grown under shade, drought stress or a combination of the two. Photosynthetic and anatomical traits were measured in the first displayed leaf cohort and in a subsequent leaf cohort generated during the mid-season. Although most anatomical and photosynthetic pigments did not vary between cohorts, photosynthetic acclimation did occur in the leaf cohort and was mainly driven by biochemical processes such as leaf nitrogen content, Rubisco carboxylation capacity and maximal Photosystem II electron transport rather than CO2 diffusion conductance. Cohort acclimation could be relevant in the context of climate change, as this temperate rainforest will likely face some degree of summer WS even under low light conditions. We suggest that the acclimation of the photosynthetic capacity among current leaf cohorts represents a well-tuned mechanism helping E.â cordifolia seedlings to face a single stress like shade or drought stress, but is insufficient to cope with simultaneous stresses.