Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 256: 121579, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631237

RESUMEN

Intensified land use can disturb water quality, potentially increasing the abundance of bacterial pathogens, threatening public access to clean water. This threat involves both direct contamination of faecal bacteria as well as indirect factors, such as disturbed water chemistry and microbiota, which can lead to contamination. While direct contamination has been well described, the impact of indirect factors is less explored, despite the potential of severe downstream consequences on water supply. To assess direct and indirect downstream effects of buildings, farms, pastures and fields on potential water sources, we studied five Swedish lakes and their inflows. We analysed a total of 160 samples in a gradient of anthropogenic activity spanning four time points, including faecal and water-quality indicators. Through species distribution modelling, Random Forest and network analysis using 16S rRNA amplicon sequencing data, our findings highlight that land use indirectly impacts lakes via inflows. Land use impacted approximately one third of inflow microbiota taxa, in turn impacting ∼20-50 % of lake taxa. Indirect effects via inflows were also suggested by causal links between e.g. water colour and lake bacterial taxa, where this influenced the abundance of several freshwater bacteria, such as Polynucleobacter and Limnohabitans. However, it was not possible to identify direct effects on the lakes based on analysis of physiochemical- or microbial parameters. To avoid potential downstream consequences on water supply, it is thus important to consider possible indirect effects from upstream land use and inflows, even when no direct effects can be observed on lakes. Legionella (a genus containing bacterial pathogens) illustrated potential consequences, since the genus was particularly abundant in inflows and was shown to increase by the presence of pastures, fields, and farms. The approach presented here could be used to assess the suitability of lakes as alternative raw water sources or help to mitigate contaminations in important water catchments. Continued broad investigations of stressors on the microbial network can identify indirect effects, avoid enrichment of pathogens, and help secure water accessibility.


Asunto(s)
Sustancias Húmicas , Hierro , Lagos , Legionella , Lagos/microbiología , ARN Ribosómico 16S/genética , Microbiología del Agua , Suecia , Calidad del Agua , Monitoreo del Ambiente
2.
Environ Res ; 232: 116419, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321339

RESUMEN

Bacteria are major utilizers of dissolved organic matter in aquatic systems. In coastal areas bacteria are supplied with a mixture of food sources, spanning from refractory terrestrial dissolved organic matter to labile marine autochthonous organic matter. Climate scenarios indicate that in northern coastal areas, the inflow of terrestrial organic matter will increase, and autochthonous production will decrease, thus bacteria will experience a change in the food source composition. How bacteria will cope with such changes is not known. Here, we tested the ability of an isolated bacterium from the northern Baltic Sea coast, Pseudomonas sp., to adapt to varying substrates. We performed a 7-months chemostat experiment, where three different substrates were provided: glucose, representing labile autochthonous organic carbon, sodium benzoate representing refractory organic matter, and acetate - a labile but low energy food source. Growth rate has been pointed out as a key factor for fast adaptation, and since protozoan grazers speed-up the growth rate we added a ciliate to half of the incubations. The results show that the isolated Pseudomonas is adapted to utilize both labile and ring-structured refractive substrates. The growth rate was the highest on the benzoate substrate, and the production increased over time indicating that adaptation did occur. Further, our findings indicate that predation can cause Pseudomonas to change their phenotype to resist and promote survival in various carbon substrates. Genome sequencing reveals different mutations in the genome of adapted populations compared to the native populations, suggesting the adaptation of Pseudomonas sp. to changing environment.


Asunto(s)
Carbono , Materia Orgánica Disuelta , Pseudomonas , Bacterias , Aclimatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA