Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477562

RESUMEN

Over two decades ago, an intercropping strategy was developed that received critical acclaim for synergizing food security with ecosystem resilience in smallholder farming. The push-pull strategy reportedly suppresses lepidopteran pests in maize through a combination of a repellent intercrop (push), commonly Desmodium spp., and an attractive, border crop (pull). Key in the system is the intercrop's constitutive release of volatile terpenoids that repel herbivores. However, the earlier described volatile terpenoids were not detectable in the headspace of Desmodium, and only minimally upon herbivory. This was independent of soil type, microbiome composition, and whether collections were made in the laboratory or in the field. Furthermore, in oviposition choice tests in a wind tunnel, maize with or without an odor background of Desmodium was equally attractive for the invasive pest Spodoptera frugiperda. In search of an alternative mechanism, we found that neonate larvae strongly preferred Desmodium over maize. However, their development stagnated and no larva survived. In addition, older larvae were frequently seen impaled and immobilized by the dense network of silica-fortified, non-glandular trichomes. Thus, our data suggest that Desmodium may act through intercepting and decimating dispersing larval offspring rather than adult deterrence. As a hallmark of sustainable pest control, maize-Desmodium push-pull intercropping has inspired countless efforts to emulate stimulo-deterrent diversion in other cropping systems. However, detailed knowledge of the actual mechanisms is required to rationally improve the strategy, and translate the concept to other cropping systems.


Asunto(s)
Ecosistema , Control de Plagas , Animales , Agricultura , Larva , Spodoptera , Terpenos , Zea mays
2.
Arthropod Plant Interact ; 14(6): 671-684, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193908

RESUMEN

Insect chemical ecology (ICE) evolved as a discipline concerned with plant-insect interactions, and also with a strong focus on intraspecific pheromone-mediated communication. Progress in this field has rendered a more complete picture of how insects exploit chemical information in their surroundings in order to survive and navigate their world successfully. Simultaneously, this progress has prompted new research questions about the evolution of insect chemosensation and related ecological adaptations, molecular mechanisms that mediate commonly observed behaviors, and the consequences of chemically mediated interactions in different ecosystems. Themed meetings, workshops, and summer schools are ideal platforms for discussing scientific advancements as well as identifying gaps and challenges within the discipline. From the 11th to the 22nd of June 2018, the 11th annual PhD course in ICE was held at the Swedish University of Agricultural Sciences (SLU) Alnarp, Sweden. The course was made up of 35 student participants from 22 nationalities (Fig. 1a) as well as 32 lecturers. Lectures and laboratory demonstrations were supported by literature seminars, and four broad research areas were covered: (1) multitrophic interactions and plant defenses, (2) chemical communication focusing on odor sensing, processing, and behavior, (3) disease vectors, and (4) applied aspects of basic ICE research in agriculture. This particular article contains a summary and brief synthesis of these main emergent themes and discussions from the ICE 2018 course. In addition, we also provide suggestions on teaching the next generation of ICE scientists, especially during unprecedented global situations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA