Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Biomol Chem ; 11(44): 7667-75, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24064703

RESUMEN

We designed and prepared a spacious and gated basket of type 2 (V = 318 Å(3)) in ten synthetic steps. With the assistance of (1)H NMR spectroscopy, we found that the pyridine gates at the rim of 2 form a seam of N-H∙∙∙N hydrogen bonds, thereby adopting right- (P) and left-handed (M) helical arrangements. The recognition characteristics of the smaller basket 1 (V = 226 Å(3)) and the larger 2 for various solvents as guests were quantified by (1)H NMR spectroscopy in CD2Cl2 (61 Å(3)), CDCl3 (75 Å(3)), CFCl3 (81 Å(3)) and CCl4 (89 Å(3)); the apparent guest binding equilibria Ka were found to be inversely proportional to the affinity of bulk solvents KS for populating each host. The rate of the P/M racemization (krac, s(-1)) was, for both 1 and 2, studied in all four solvents using dynamic NMR spectroscopy. From these experiments, two isokinetic relationships (ΔS++P/M vs. ΔH++P/M) were identified with each one corresponding to a different mechanism of P/M racemization. A computational study (B3LYP/6-31+G**//PM6) of 1 and 2 in the gas phase indicates two competing racemization pathways: (a) RM1-2 describes a pivoting of a single gate followed by the rotation of the remaining two gates, while (b) RM3 depicts simultaneous (geared) rotation of all three gates. The racemization of the larger basket 2, in all four solvents (packing coefficient, PC = 0.19-0.28), conformed to one isokinetic relationship, which also coincided with the operation of the smaller basket 1 in CD2Cl2 (PC = 0.27). However, in CDCl3, CFCl3 and CCl4 (PC = 0.33-0.39), the mode of action of 1 appears to correlate with a different isokinetic relationship. Thus, we propose that the population of the basket's inner space (PC) determines the mechanism of P/M racemization. When PC < 0.3, the mechanism of operation is RM1-2, whereas, a greater packing, represented when PC > 0.3, enforces the geared RM3 mechanistic alternative.

2.
J Org Chem ; 72(26): 9954-62, 2007 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-18027966

RESUMEN

Quinol esters 2b, 2c, and 3b and sulfonamide 4c were investigated as possible precursors to 4-alkylaryloxenium ions, reactive intermediates that have not been previously detected. These compounds exhibit a variety of interesting reactions, but with one possible exception, they do not generate oxenium ions. The 4-isopropyl ester 2b predominantly undergoes ordinary acid- and base-catalyzed ester hydrolysis. The 4-tert-butyl ester 2c decomposes under both acidic and neutral conditions to generate tert-butanol and 1-acetyl-1,4-hydroquinone, 8, apparently by an SN1 mechanism. This is also a minor decomposition pathway for 2b, but the mechanism in that case is not likely to be SN1. Decomposition of 2c in the presence of N3- leads to formation of the explosive 2,3,5,6-tetraazido-1,4-benzoquinone, 14, produced by N3--induced hydrolysis of 8, followed by a series of oxidations and nucleophilic additions by N3-. No products suggestive of N3--trapping of an oxenium ion were detected. The 4-isopropyl dichloroacetic acid ester 3b reacts with N3- to generate the two adducts 2-azido-4-isopropylphenol, 5b, and 3-azido-4-isopropylphenol, 11b. Although 5b is the expected product of N3- trapping of the oxenium ion, kinetic analysis shows that it is produced by a kinetically bimolecular reaction of N3- with 3b. No oxenium ion is involved. The sulfonamide 4c predominantly undergoes a rearrangement reaction under acidic and neutral conditions, but a minor component of the reaction yields 4-tert-butylcresol, 17, and 2-azido-4-tert-butylphenol, 5c, in the presence of N3-. These products may indicate that 4c generates the oxenium ion 1c, but they are generated in very low yields (ca. 10%) so it is not possible to definitively conclude that 1c has been produced. If 1c has been generated, the N3--trapping data indicate that it is a very short-lived and reactive species in H2O. Comparisons with similarly reactive nitrenium ions indicate that the lifetime of 1c is ca. 20-200 ps if it is generated, so it must react by a preassociation process. Density functional theory calculations at the B3LYP/6-31G*//HF/6-31G* level coupled with kinetic correlations also indicate that the aqueous solution lifetimes of 1a-c are in the picosecond range.

3.
J Biol Chem ; 282(34): 24980-9, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17580301

RESUMEN

The subcellular sites of branched-chain amino acid metabolism in plants have been controversial, particularly with respect to valine catabolism. Potential enzymes for some steps in the valine catabolic pathway are clearly present in both mitochondria and peroxisomes, but the metabolic functions of these isoforms are not clear. The present study examined the possible function of these enzymes in metabolism of isobutyryl-CoA and propionyl-CoA, intermediates in the metabolism of valine and of odd-chain and branched-chain fatty acids. Using (13)C NMR, accumulation of beta-hydroxypropionate from [2-(13)C]propionate was observed in seedlings of Arabidopsis thaliana and a range of other plants, including both monocots and dicots. Examination of coding sequences and subcellular targeting elements indicated that the completed genome of A. thaliana likely codes for all the enzymes necessary to convert valine to propionyl-CoA in mitochondria. However, Arabidopsis mitochondria may lack some of the key enzymes for metabolism of propionyl-CoA. Known peroxisomal enzymes may convert propionyl-CoA to beta-hydroxypropionate by a modified beta-oxidation pathway. The chy1-3 mutation, creating a defect in a peroxisomal hydroxyacyl-CoA hydrolase, abolished the accumulation of beta-hydroxyisobutyrate from exogenous isobutyrate, but not the accumulation of beta-hydroxypropionate from exogenous propionate. The chy1-3 mutant also displayed a dramatically increased sensitivity to the toxic effects of excess propionate and isobutyrate but not of valine. (13)C NMR analysis of Arabidopsis seedlings exposed to [U-(13)C]valine did not show an accumulation of beta-hydroxypropionate. No evidence was observed for a modified beta-oxidation of valine. (13)C NMR analysis showed that valine was converted to leucine through the production of alpha-ketoisovalerate and isopropylmalate. These data suggest that peroxisomal enzymes for a modified beta-oxidation of isobutyryl-CoA and propionyl-CoA could function for metabolism of substrates other than valine.


Asunto(s)
Butiratos/química , Peroxisomas/metabolismo , Propionatos/química , Arabidopsis/metabolismo , Hidroxibutiratos/química , Isobutiratos , Leucina/química , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Semillas/metabolismo , Factores de Tiempo , Valina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA