Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Blood ; 98(12): 3456-64, 2001 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11719388

RESUMEN

Treatment of leukemia by myeloablative conditioning and transplantation of major histocompatibility complex (MHC)-mismatched stem cells is generally avoided because of the high risk of graft rejection or lethal graft-versus-host disease (GVHD). This study shows that MHC-incompatible cells can engraft stably after nonmyeloablative conditioning with immunosuppressive chemotherapy and low-dose total body irradiation (TBI). Long-term mixed hematopoietic chimerism, clonal deletion of donor-reactive T cells, and bidirectional cytotoxic T-cell tolerance were achieved by transplanting MHC-mismatched marrow cells into recipients conditioned with pretransplantation fludarabine or cyclophosphamide (Cy), 50 to 200 cGy TBI on day -1, and Cy 200 mg/kg intraperitoneally on day 3. In this model, long-term donor chimerism was proportional to the dose of TBI or donor marrow cells. Pretransplantation fludarabine and posttransplantation Cy were both required for alloengraftment, but the drugs had additional effects. For example, fludarabine sensitized host stem cells to the toxicity of TBI, because animals conditioned with both agents had higher chimerism than animals conditioned with TBI alone (P <.05). Also, posttransplantation Cy attenuated lethal and nonlethal GVH reactions, because F(1) recipients of host-reactive, parental spleen cells survived longer (P <.05) and had lower donor cell chimerism (P <.01) if they received posttransplantation Cy than if they did not. Finally, delayed infusions of donor lymphocytes into mixed chimeras prolonged survival after leukemia challenge (P <.0001) without causing lethal GVHD. These results indicate that stable engraftment of MHC-incompatible cells can be induced after fludarabine-based, nonmyeloablative conditioning and that it serves as a platform for adoptive immunotherapy with donor lymphocyte infusions.


Asunto(s)
Ciclofosfamida/uso terapéutico , Trasplante de Células Madre Hematopoyéticas , Inmunosupresores/uso terapéutico , Acondicionamiento Pretrasplante , Vidarabina/análogos & derivados , Vidarabina/administración & dosificación , Irradiación Corporal Total , Animales , Supervivencia de Injerto , Enfermedad Injerto contra Huésped/prevención & control , Efecto Injerto vs Leucemia , Histocompatibilidad , Ratones , Ratones Endogámicos AKR , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Linfocitos T Citotóxicos/inmunología , Quimera por Trasplante
2.
Blood ; 97(12): 3960-5, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11389040

RESUMEN

Sickle cell anemia (SCA) is an inherited disorder of beta-globin, resulting in red blood cell rigidity, anemia, painful crises, organ infarctions, and reduced life expectancy. Allogeneic blood or marrow transplantation (BMT) can cure SCA but is associated with an 8% to 10% mortality rate, primarily from complications of marrow-ablative conditioning. Transplantation of allogeneic marrow after less intensive conditioning reduces toxicity but may result in stable mixed hematopoietic chimerism. The few SCA patients who inadvertently developed mixed chimerism after BMT remain symptom free, suggesting that mixed chimerism can reduce disease-related morbidity. However, because the effects of various levels of mixed chimerism on organ pathology have not been characterized, this study examined the histologic effects of an increasing percentage of normal donor hematopoiesis in a mouse model of BMT for SCA. In lethally irradiated normal mice that were reconstituted with varying ratios of T-cell-depleted marrow from normal and transgenic "sickle cell" mice, normal myeloid chimerism in excess of 25% was associated with more than 90% normal hemoglobin (Hb). However, 70% normal myeloid chimerism was required to reverse the anemia. Organ pathology, including liver infarction, was present in mice with sickle Hb (HbS) levels as low as 16.8% (19.6% normal myeloid chimerism). Histologic abnormalities increased in severity up to 80% HbS, but were less severe in mice with more than 80% HbS than in those with 40% to 80% HbS. Therefore, stable mixed chimerism resulting from nonmyeloablative BMT may reduce the morbidity from SCA, but prevention of all disease complications may require minimizing the fraction of circulating sickle red cells. (Blood. 2001;97:3960-3965)


Asunto(s)
Anemia de Células Falciformes/terapia , Trasplante de Médula Ósea , Hematopoyesis , Quimera por Trasplante , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/patología , Animales , Femenino , Hemoglobina Falciforme/metabolismo , Recuento de Leucocitos , Modelos Lineales , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Recuento de Reticulocitos , Bazo/patología
3.
Nat Cell Biol ; 3(4): 409-16, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11283615

RESUMEN

TRAIL (tumour-necrosis factor-related apoptosis ligand or Apo2L) triggers apoptosis through engagement of the death receptors TRAIL-R1 (also known as DR4) and TRAIL-R2 (DR5). Here we show that the c-Rel subunit of the transcription factor NF-kappaB induces expression of TRAIL-R1 and TRAIL-R2; conversely, a transdominant mutant of the inhibitory protein IkappaBalpha or a transactivation-deficient mutant of c-Rel reduces expression of either death receptor. Whereas NF-kappaB promotes death receptor expression, cytokine-mediated activation of the RelA subunit of NF-kappaB also increases expression of the apoptosis inhibitor, Bcl-xL, and protects cells from TRAIL. Inhibition of NF-kappaB by blocking activation of the IkappaB kinase complex reduces Bcl-x L expression and sensitizes tumour cells to TRAIL-induced apoptosis. The ability to induce death receptors or Bcl-xL may explain the dual roles of NF-kappaB as a mediator or inhibitor of cell death during immune and stress responses.


Asunto(s)
Regulación de la Expresión Génica , Proteínas I-kappa B , Glicoproteínas de Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Receptores del Factor de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/farmacología , Ratones , Inhibidor NF-kappaB alfa , FN-kappa B/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-rel/genética , Tolerancia a Radiación , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Receptores del Factor de Necrosis Tumoral/biosíntesis , Ligando Inductor de Apoptosis Relacionado con TNF , Factor de Transcripción ReIA , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA