Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 48(1): 185-200, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35044583

RESUMEN

Egg biochemical composition is among the main factors affecting offspring quality and survival during the yolk-sac stage, when larvae depend exclusively on yolk nutrients. These nutrients are primarily embedded in the developing oocytes during vitellogenesis. In aquaculture, assisted reproduction procedures may be applied enabling gamete production. For the European eel (Anguilla anguilla), reproductive treatment involves administration of pituitary extracts from carp (CPE) or salmon (SPE) to induce and sustain vitellogenesis. In the present study, we compared the influence of CPE and SPE treatments on offspring quality and composition as well as nutrient utilization during the yolk-sac stage. Thus, dry weight, proximal composition (total lipid, total protein), free amino acids, and fatty acids were assessed in eggs and larvae throughout the yolk-sac stage, where body and oil-droplet area were measured to estimate growth rate, oil-droplet utilization, and oil-droplet utilization efficiency. The results showed that CPE females spawned eggs with higher lipid and free amino acid contents. However, SPE females produced more buoyant eggs with higher fertilization rate as well as larger larvae with more energy reserves (estimated as oil-droplet area). Overall, general patterns of nutrient utilization were detected, such as the amount of total lipid and monounsaturated fatty acids decreasing from the egg stage and throughout the yolk-sac larval stage. On the contrary, essential fatty acids and free amino acids were retained. Notably, towards the end of the yolk-sac stage, the proximal composition and biometry of surviving larvae, from both treatments, were similar.


Asunto(s)
Anguilla , Hormonas/farmacología , Óvulo/química , Vitelogénesis , Saco Vitelino/química , Aminoácidos/química , Animales , Extractos Celulares , Ácidos Grasos/química , Femenino , Larva , Hipófisis , Vitelogénesis/efectos de los fármacos
2.
Artículo en Inglés | MEDLINE | ID: mdl-30641188

RESUMEN

The present study is focused to elucidate the main characteristics of the digestive function of this carnivorous fast-growing fish living at high temperatures. With this aim, we have examined the effects of an increased temperature from 30 to 34 °C on the daily pattern of gastrointestinal pH, enzymatic proteolytic digestive activity and the feed transit time in early juveniles of cobia (Rachycentron canadum), a species living in tropical and subtropical waters with an increasing aquaculture production. Fish were fed two meals a day. Gastric luminal pH was permanently acidic (mean pH values: 2.76-4.74) while the intestinal pH increased from neutral/slightly acidic to slightly alkaline when the digesta was present, with an increasing alkalinity from proximal to distal intestine (mean pH values: 6.05 to 7.69). The temperature did not affect the gastric pH but a slightly higher acidity was induced in the intestine at 34 °C. Pepsin activity showed a daily rhythm at 30 °C with maximum in the middle of the light period, while at 34 °C some hourly changes coinciding with feed adding without a clear daily trend during the 24-h period were observed. The trypsin activity exhibited a daily rhythm at both temperatures with an increase after morning feeding to reach a maximum several hours later. Average pepsin activity during the daily cycle was slightly higher at 34 °C (6.1 and 7.3 U mg-1 BW at 30 and 34 °C respectively), but values were significantly different only at 8 and 24 h after the morning meal. Similarly, the trypsin activity was significantly affected by the temperature only at 8 and 16 h after the morning meal, but daily activity averages were similar (1.20 and 1.29 U g-1 BW at 30 and 34 °C respectively). The partial transit rates of the first meal in the stomach for each period inter-samplings were higher during the first 4-h period and decreased progressively along the rest of the 24-h cycle at both temperatures, but no significant differences were detected at 30 °C. In addition, the transit was notably faster at 34 °C particularly during the first 8 h after feeding, with rates between 100 and 65% of total volume displaced (intake or released) during each 4-h period. In the intestine the transit rate was relatively constant and similar at both temperatures during 12 h after feeding. Then the rates remained very low during the following 12 h. Residence time of the first meal was longer at 30 than at 34 °C, particularly in the stomach (12 h:02 min vs 4 h:54 min respectively). In the intestine the difference was not so large (8 h:18 min vs 6 h:24 min respectively). In a parallel study under same conditions, cobia reared at 30 °C grew faster and showed a more favorable feed conversion ratio than those at elevated temperature (34 °C). The present results indicate that at 34 °C, a subtle increase of proteolytic activity cannot compensate for the faster gut transit rate. Therefore, 30 °C is more appropriate temperature for the early on-growing of cobia because at higher temperatures the digestion efficiency decrease being one of the causes for a lower growth.


Asunto(s)
Digestión , Peces/fisiología , Calor , Animales , Acuicultura , Peces/crecimiento & desarrollo , Tránsito Gastrointestinal , Humanos , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA