RESUMEN
BACKGROUND: Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. RESULTS: Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. CONCLUSIONS: Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR.
Asunto(s)
Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Genómica , Salmonella typhi/genética , Bangladesh , Cromosomas Bacterianos/genética , Islas Genómicas/genética , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Plásmidos/genética , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificaciónRESUMEN
For epidemiological and surveillance purposes, it is relevant to monitor the distribution and dynamics of Streptococcus pneumoniae serotypes. Conventional serotyping methods do not provide rapid or quantitative information on serotype loads. Quantitative serotyping may enable prediction of the invasiveness of a specific serotype compared to other serotypes carried. Here, we describe a novel, rapid multiplex real-time PCR assay for identification and quantification of the 40 most prevalent pneumococcal serotypes and the assay impacts in pneumonia specimens from emerging and developing countries. Eleven multiplex PCR to detect 40 serotypes or serogroups were optimized. Quantification was enabled by reference to standard dilutions of known bacterial load. Performance of the assay was evaluated to specifically type and quantify S. pneumoniae in nasopharyngeal and blood samples from adult and pediatric patients hospitalized with pneumonia (n = 664) from five different countries. Serogroup 6 was widely represented in nasopharyngeal specimens from all five cohorts. The most frequent serotypes in the French, South African, and Brazilian cohorts were 1 and 7A/F, 3 and 19F, and 14, respectively. When both samples were available, the serotype in blood was always present as carriage with other serotypes in the nasopharynx. Moreover, the ability of a serotype to invade the bloodstream may be linked to its nasopharyngeal load. The mean nasopharyngeal concentration of the serotypes that moved to the blood was 3 log-fold higher than the ones only found in the nasopharynx. This novel, rapid, quantitative assay may potentially predict some of the S. pneumoniae serotypes invasiveness and assessment of pneumococcal serotype distribution.
Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex/métodos , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Serotipificación/métodos , Streptococcus pneumoniae/genética , Adulto , Brasil , Cambodia , Preescolar , Estudios de Cohortes , ADN Bacteriano/genética , Francia , Humanos , Malí , Infecciones Neumocócicas/sangre , Reproducibilidad de los Resultados , Serogrupo , Sudáfrica , Especificidad de la Especie , Streptococcus/clasificación , Streptococcus/genética , Streptococcus pneumoniae/clasificaciónRESUMEN
A steady increase in the incidence of Guillain-Barré syndrome (GBS) with a seasonal preponderance, almost exclusively related to Campylobacter jejuni, and a rise in the incidence of laboratory-confirmed Campylobacter enteritis have been reported from Curaçao, Netherlands Antilles. We therefore investigated possible risk factors associated with diarrhea due to epidemic C. jejuni. Typing by pulsed-field gel electrophoresis identified four epidemic clones which accounted for almost 60% of the infections. One hundred six cases were included in a case-control study. Infections with epidemic clones were more frequently observed in specific districts in Willemstad, the capital of Curaçao. One of these clones caused infections during the rainy season only and was associated with the presence of a deep well around the house. Two out of three GBS-related C. jejuni isolates belonged to an epidemic clone. The observations presented point toward water as a possible source of Campylobacter infections.
Asunto(s)
Infecciones por Campylobacter/epidemiología , Campylobacter jejuni , Adulto , Campylobacter jejuni/clasificación , Campylobacter jejuni/genética , Campylobacter jejuni/aislamiento & purificación , Estudios de Casos y Controles , Escolaridad , Electroforesis en Gel de Campo Pulsado , Familia , Femenino , Humanos , Renta , Masculino , Antillas Holandesas/epidemiología , Valores de Referencia , Factores de Riesgo , Serotipificación/métodosRESUMEN
Campylobacter jejuni isolates (n = 234) associated with gastroenteritis and the Guillain-Barré syndrome (GBS) in the island of Curaçao, Netherlands Antilles, and collected from March 1999 to March 2000 were investigated by a range of molecular typing techniques. Data obtained by pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, multilocus sequence typing (MLST), automated ribotyping, and sequence analysis of the short variable region of the flagellin gene (flaA) were analyzed separately and in combination. Similar groupings were obtained by all methods, with the data obtained by MLST and AFLP analysis exhibiting the highest degree of congruency. MLST identified 29 sequence types, which were assigned to 10 major clonal complexes. PFGE, AFLP analysis, and ribotyping identified 10, 9, and 8 of these clonal groups, respectively; however, these three techniques permitted subdivision of the clonal groups into more different types. Members of seven clonal groups comprising 107 isolates were obtained from November 1999 to February 2000, and no distinguishing characteristics were identified for two GBS-associated strains. The sequence type 41 (ST-41), ST-508, and ST-657 clonal complexes and their corresponding AFLP types have been rare or absent in the Campylobacter data sets described to date. We conclude that several clonal complexes of C. jejuni are associated with human disease in Curaçao, and some of these have not been reported elsewhere. Furthermore, given the observation that C. jejuni-associated diseases appear to be more severe from November to February, it can be speculated that this may be due to the presence of virulent clones with a limited span of circulation.