Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36013848

RESUMEN

Green mussel and crab shells are natural sources of CaCO3, which is widely used as a bioceramic for biomedical applications, although they are commonly disposed of in landfills. The improper disposal of green mussel and crab shells can cause environmental pollution, reducing the quality of life in the community. Many studies have reported the preparation of CaCO3 from green mussels and crab shells. However, there are limited studies comparing the characteristics, including the crystal phase obtained, weight percentage (%) of crystal, crystal size, crystal system, and elemental composition of CaCO3 from green mussel shells, crab shells, and commercial CaCO3. The objective of this research was to compare the calcium carbonate properties formed from green mussel (PMS) and crab (PCS) shells to commercial CaCO3. Green mussel and crab shells were crushed to powder and were calcined at 900 °C for 5 h. Precipitated Calcium Carbonate (PCC) was synthesized from calcined green mussel and crab shells using a solution of 2M HNO3, NH4OH, and CO2 gas. The effect of setting parameters on the synthesized product was analyzed using XRD and SEM-EDX methods. This study shows that the chemical composition of PMS is nearly identical to that of commercial CaCO3, where no contaminants were identified. In contrast, PCS has N components other than Ca, C, and O. Furthermore, the predominance of the vaterite crystal phases in PMS and PCS, with respective weight percentages of 91.2% and 98.9%, provides a benefit for biomaterial applications. The crystallite sizes of vaterite in PMS, PCS, and calcite in commercial CaCO3 are 34 nm, 21 nm, and 15 nm, respectively.

2.
Molecules ; 26(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34833940

RESUMEN

Recent developments in the transformation of biobased 5-hydroxymethylfurfural (HMF) into a potential liquid fuel, 2,5-dimethylfuran (DMF), are summarised. This review focuses briefly on the history of HMF conversion to DMF in terms of the feedstock used and emphasises the ideal requirements in terms of the catalytic properties needed in HMF transformation into DMF. The recent state of the art and works on HMF transformation into DMF are discussed in comparison to noble metals and non-noble metals as well as bimetallic catalysts. The effect of the support used and the reaction conditions are also discussed. The recommendations for future work and challenges faced are specified.


Asunto(s)
Biocombustibles , Furaldehído/análogos & derivados , Furanos/química , Biomasa , Catálisis , Furaldehído/química , Hidrogenación , Lignina/química , Metales/química
3.
Polymers (Basel) ; 13(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641120

RESUMEN

The aim of this work was to improve the processability of triglycidyl-p-aminophenol (TGPAP) epoxy resin. To achieve this improvement, a diluent, the diglycidyl ether of bisphenol F (DGEBF or BPF), was added to TGPAP, and the blended epoxy was then cured with 4, 4'-diaminodiphenyl sulfones (DDS). A response surface methodology (RSM) was used, with the target response being to achieve a blended resin with a high glass transition temperature (Tg) and maximum pot life (or processing window, PW). Characterization through dynamic mechanical thermal analysis (DMTA) and using a rheometer indicated that the optimum formulation was obtained at 55.6 wt.% of BPF and a stoichiometric ratio of 0.60. Both values were predicted to give Tg at 180 °C and a processing window of up to 136.1 min. The predicted values were verified, with the obtained Tg and processing window (PW) being 181.2 ± 0.8 °C and 140 min, respectively, which is close to the values predicted using the RSM.

4.
Polymers (Basel) ; 13(19)2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34641224

RESUMEN

In this work, the potential of utilizing a waste latex-based precursor (i.e., natural rubber glove (NRG)) as a carbon source for carbon nanotube (CNT) fabrication via chemical vapor deposition has been demonstrated. Gas chromatography-mass spectroscopy (GC-MS) analysis reveals that the separation of the lightweight hydrocarbon chain from the heavier long chain differs in hydrocarbon contents in the NRG fraction (NRG-L). Both solid NRG (NRG-S) and NRG-L samples contain >63% carbon, <0.6% sulfur and <0.08% nitrogen content, respectively, as per carbon-nitrogen-sulfur (CNS) analysis. Growth of CNTs on the samples was confirmed by Raman spectra, SEM and TEM images, whereby it was shown that NRG-S is better than NRG-L in terms of synthesized CNTs yield percentage with similar quality. The optimum vaporization and reaction temperatures were 350 and 800 °C, respectively, considering the balance of good yield percentage (26.7%) and quality of CNTs (ID/IG = 0.84 ± 0.08, diameter ≈ 122 nm) produced. Thus, utilization of waste NRG as a candidate for carbon feedstock to produce value-added CNTs products could be a significant approach for eco-technology.

5.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641418

RESUMEN

The reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model to test the catalytic activity of copper(II) complexes containing N,O-chelating Schiff base ligands. In this study, a series of copper(II) complexes containing respective Schiff base ligands, N'-salicylidene-2-aminophenol (1), N'-salicylidene-2-aminothiazole (2), and N,N'-bis(salicylidene)-o-phenylenediamine (3), were synthesized and characterized by elemental analysis, Fourier transform infrared (FT-IR), UV-Visible (UV-Vis) and electron paramagnetic resonance (EPR) spectroscopies. The results from the 4-nitrophenol reduction showed that 3 has the highest catalytic activities with 97.5% conversion, followed by 2 and 1 with 95.2% and 90.8% conversions, respectively. The optimization of the catalyst amount revealed that 1.0 mol% of the catalyst was the most optimized amount with the highest conversion compared to the other doses, 0.5 mol% and 1.5 mol%. Recyclability and reproducibility tests confirmed that all three complexes were active, efficient, and possess excellent reproducibility with consistent catalytic performances and could be used again without a major decrease in the catalytic activity.

6.
Molecules ; 25(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33171911

RESUMEN

N-heterocyclic carbenes (NHCs) are common ancillary ligands in organometallic compounds that are used to alter the electronic and steric properties of a metal centre. To date, various NHCs have been synthesised with different electronic properties, which can be done by modifying the backbone or changing the nitrogen substituents group. This study describes a systematic modification of NHCs by the inclusion of fluorine substituents and examines the use of selenium-NHC compounds to measure the π-accepting ability of these fluorinated NHC ligands. Evaluation of the 77Se NMR chemical shifts of the selenium adducts reveals that fluorinated NHCs have higher chemical shifts than the non-fluorinated counterparts, IMes and IPh. Higher 77Se NMR chemical shifts values indicate a stronger π-accepting ability of the NHC ligands. The findings of this study suggest that the presence of fluorine atoms has increased the π-accepting ability of the corresponding NHC ligands. This work supports the advantage of the 77Se NMR chemical shifts of selenium-NHC compounds for assessing the influence of fluorine substituents on NHC ligands.


Asunto(s)
Flúor/química , Compuestos Heterocíclicos/química , Compuestos de Selenio/química , Isótopos/química , Ligandos , Espectroscopía de Resonancia Magnética , Metano/análogos & derivados , Metano/química , Selenio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA