Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36295399

RESUMEN

Here, we report the preparation, characterization, and performance of reforming propane and n-butane into a syngas of composite structured M/Ce0.75Zr0.25O2/Al2O3/FeCrAl (M = 0.46 wt.% Pt, 0.24 wt.% Rh, and 0.24 wt.% Ru) catalysts. The catalysts are composed of a high-heat-conducting FeCrAl block with preset geometry, with a surface nearly totally covered by θ-Al2O3. Afterwards, a layer of ceria−zirconia mixed oxide was deposited. The formed oxide coating was used as a support for 2−3 nm sized Pt, Rh, or Ru nanoparticles. The performance of the catalysts in propane steam reforming decreased in the order of Rh ≈ Ru > Pt. The reformates obtained in the propane steam reforming over Rh- and Ru/Ce0.75Zr0.25O2/Al2O3/FeCrAl at 600 °C and GHSV = 8300 h−1 contained 65.2 and 62.4 vol.% of H2, respectively, and can be used as a fuel for solid oxide fuel cells. In the oxidative steam reforming of propane at 700 °C and GHSV= 17,000 h−1, the activities of the Rh- and Pt-based catalysts were similar and the compositions of the outlet gas mixtures were quite close to equilibrium in both cases. Increasing the reagent flow rate to 25,600 h−1 showed stability of the Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl performance, whereas the Pt/Ce0.75Zr0.25O2/Al2O3/FeCrAl activity decreased. A mathematical model considering the velocity field, mass balance, pressure, and temperature distribution, as well as the reaction kinetics, was suggested for the propane steam and oxidative steam reforming over the Pt- and Rh/Ce0.75Zr0.25O2/Al2O3/FeCrAl catalysts. The model well described the experimental results.

2.
Inorg Chem ; 58(2): 1007-1011, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30608660

RESUMEN

A novel method is proposed for studying the thermal decay of the oxygen-coordinated nitrosyl metastable states. Having examined 18 different ruthenium nitrosyl complexes, we observed that, upon photoinduced rotation from Ru-NO to Ru-ON coordination, the frequency of the nitrosyl valence bands shifts, on average, by 126 ± 15 cm-1. The thermal stability of the product Ru-ON state is qualitatively characterized (decay temperature, Arrhenius activation energy, and pre-exponential factor) using infrared absorption of the NO group, in comparison with the reference complex(es), which are all heated in the same KBr disk during temperature sweep.

3.
Inorg Chem ; 55(18): 9158-61, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27598533

RESUMEN

The properties of Ru-ON states were studied in cis-[RuNO(NH3)2(NO2)2OH] under illumination. The structure contains two nonequivalent complexes, and the metastable state was generated for both molecules with 19(1) and 31(1)% populations. The MS1 thermal decay occurs as a one-step process at about 240 K according to differential scanning calorimetry (DSC). For the first-order reaction, the frequency factor and activation energy for the decay process were determined as 2.0(2) × 10(13) s(-1) and 68.3(4) kJ mol(-1), respectively. Also, the simultaneous metastable state decay observed via DSC was in agreement with IR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA