Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37628148

RESUMEN

Mapping network nodes and edges to communities and network functions is crucial to gaining a higher level of understanding of the network structure and functions. Such mappings are particularly challenging to design for covert social networks, which intentionally hide their structure and functions to protect important members from attacks or arrests. Here, we focus on correctly inferring the structures and functions of such networks, but our methodology can be broadly applied. Without the ground truth, knowledge about the allocation of nodes to communities and network functions, no single network based on the noisy data can represent all plausible communities and functions of the true underlying network. To address this limitation, we apply a generative model that randomly distorts the original network based on the noisy data, generating a pool of statistically equivalent networks. Each unique generated network is recorded, while each duplicate of the already recorded network just increases the repetition count of that network. We treat each such network as a variant of the ground truth with the probability of arising in the real world approximated by the ratio of the count of this network's duplicates plus one to the total number of all generated networks. Communities of variants with frequently occurring duplicates contain persistent patterns shared by their structures. Using Shannon entropy, we can find a variant that minimizes the uncertainty for operations planned on the network. Repeatedly generating new pools of networks from the best network of the previous step for several steps lowers the entropy of the best new variant. If the entropy is too high, the network operators can identify nodes, the monitoring of which can achieve the most significant reduction in entropy. Finally, we also present a heuristic for constructing a new variant, which is not randomly generated but has the lowest expected cost of operating on the distorted mappings of network nodes to communities and functions caused by noisy data.

2.
Inf Sci (N Y) ; 584: 387-398, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37927357

RESUMEN

We focus on organizational structures in covert networks, such as criminal or terrorist networks. Their members engage in illegal activities and attempt to hide their association and interactions with these networks. Hence, data about such networks are incomplete. We introduce a novel method of rewiring covert networks parameterized by the edge connectivity standard deviation. The generated networks are statistically similar to themselves and to the original network. The higher-level organizational structures are modeled as a multi-layer network while the lowest level uses the Stochastic Block Model. Such synthetic networks provide alternative structures for data about the original network. Using them, analysts can find structures that are frequent, therefore stable under perturbations. Another application is to anonymize generated networks and use them for testing new software developed in open research facilities. The results indicate that modeling edge structure and the hierarchy together is essential for generating networks that are statistically similar but not identical to each other or the original network. In experiments, we generate many synthetic networks from two covert networks. Only a few structures of synthetics networks repeat, with the most stable ones shared by 18% of all synthetic networks making them strong candidates for the ground truth structure.

3.
PLoS One ; 16(8): e0255982, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34412110

RESUMEN

Milgram empirically showed that people knowing only connections to their friends could locate any person in the U.S. in a few steps. Later research showed that social network topology enables a node aware of its full routing to find an arbitrary target in even fewer steps. Yet, the success of people in forwarding efficiently knowing only personal connections is still not fully explained. To study this problem, we emulate it on a real location-based social network, Gowalla. It provides explicit information about friends and temporal locations of each user useful for studies of human mobility. Here, we use it to conduct a massive computational experiment to establish new necessary and sufficient conditions for achieving social search efficiency. The results demonstrate that only the distribution of friendship edges and the partial knowledge of friends of friends are essential and sufficient for the efficiency of social search. Surprisingly, the efficiency of the search using the original distribution of friendship edges is not dependent on how the nodes are distributed into space. Moreover, the effect of using a limited knowledge that each node possesses about friends of its friends is strongly nonlinear. We show that gains of such use grow statistically significantly only when this knowledge is limited to a small fraction of friends of friends.


Asunto(s)
Comunicación , Amigos , Relaciones Interpersonales , Conducta Social , Red Social , Apoyo Social , Humanos
4.
Appl Netw Sci ; 4(1): 127, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-37915975

RESUMEN

Understanding criminal activities, their structure and dynamics are fundamental for designing tools for crime prediction that can also guide crime prevention. Here, we study crimes committed in city community areas based on police crime reports and demographic data for the City of Chicago collected over 16 consecutive years. Our goal is to understand how the network of city community areas shapes dynamics of criminal offenses and demographic characteristics of their inhabitants. Our results reveal the presence of criminal hot-spots and expose the dynamic nature of criminal activities. We identify the most influential features for forecasting the per capita crime rate in each community. Our results indicate that city community crime is driven by spatio-temporal dynamics since the number of crimes committed in the past among the spatial neighbors of each community area and in the community itself are the most important features in our predictive models. Moreover, certain urban characteristics appear to act as triggers for the spatial spreading of criminal activities. Using the k-Means clustering algorithm, we obtained three clearly separated clusters of community areas, each with different levels of crimes and unique demographic characteristics of the district's inhabitants. Further, we demonstrate that crime predictive models incorporating both demographic characteristics of a community and its crime rate perform better than models relying only on one type of features. We develop predictive algorithms to forecast the number of future crimes in city community areas over the periods of one-month and one-year using varying sets of features. For one-month predictions using just the number of prior incidents as a feature, the critical length of historical data, τc, of 12 months arises. Using more than τc months ensures high accuracy of prediction, while using fewer months negatively impacts prediction quality. Using features based on demographic characteristics of the district's inhabitants weakens this impact somewhat. We also forecast the number of crimes in each community area in the given year. Then, we study in which community area and over what period an increase in crime reduction funding in this area will yield the largest reduction of the crime in the entire city. Finally, we study and compare the performance of various supervised machine learning algorithms classifying reported crime incidents into the correct crime category. Using the temporal patterns of various crime categories improves the classification accuracy. The methodologies introduced here are general and can be applied to other cities for which data about criminal activities and demographics are available.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA