Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; (13): 1760-2, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19294287

RESUMEN

The metastable iron(III) imido species LtBuFeNAd catalyzes transfer of the nitrene fragment NAd from an organic azide to isocyanides or CO, forming unsymmetrical carbodiimides or isocyanates.

2.
J Am Chem Soc ; 130(19): 6074-5, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18419120

RESUMEN

This communication reports the first examples of transition metal complexes containing an RNNNNNNR 2- ligand. Addition of 1-azidoadamantane to the diiron(I) synthon LRFeNNFeL R (L R = HC[C(R)N(2,6- iPr 2C 6H 3)] 2; R = methyl, tert-butyl) leads to the diiron complexes L RFe(mu-eta2:eta2-AdN6Ad)FeLR, which are surprisingly thermally stable. Magnetic, Mössbauer, and crystallographic data are consistent with pairs of high-spin iron(II) ions antiferromagnetically coupled through a dianionic AdN6Ad 2- bridge.


Asunto(s)
Adamantano/análogos & derivados , Azidas/química , Compuestos Ferrosos/química , Cristalografía por Rayos X , Estructura Molecular , Oxidación-Reducción , Espectroscopía de Mossbauer
3.
Chemistry ; 13(19): 5503-14, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17343287

RESUMEN

This paper describes the first material to show the well-known light-induced excited spin-state trapping (LIESST) effect, the metastable excited state of which relaxes at a temperature approaching its thermal spin-crossover. Cooling polycrystalline [FeL(2)][BF(4)](2).x H(2)O (L=2,6-bis[3-methylpyrazol-1-yl]pyridine; x=0-1/3) at 1 K min(-1) leads to a cooperative spin transition, taking place in two steps centered at 147 and 105 K, that is only 54 % complete by magnetic susceptibility. Annealing the sample at 100 K for 2 h results in a slow decrease in chi(M)T to zero, showing that the remainder of the spin-crossover can proceed, but is kinetically slow. The crystalline high- and fully low-spin phases of [FeL(2)][BF(4)](2).x H(2)O are isostructural (C2/c, Z=8), but the spin-crossover proceeds via a mixed-spin intermediate phase that has a triple unit cell (C2/c, Z=24). The water content of the crystals is slowly lost on exposure to air without causing decomposition. However, the high-spin/mixed-spin transition in the crystal proceeds at 110+/-20 K when x=1/3 and 155+/-5 K when x=0, which correspond to the two spin-crossover steps seen in the bulk material. The high-spin state of the compound is generated quantitatively by irradiation of the low-spin or the mixed-spin phase at 10 K, and in approximately 70 % yield by rapidly quenching the sample to 10 K. This metastable high-spin state relaxes back to the low-spin ground state at 87+/-1 K in one, not two, steps, and without passing through the intermediate phase. This implies that thermal spin-crossover and thermally activated high-spin-low-spin relaxation in this material become decoupled, thus avoiding the physical impossibility of T(LIESST) being greater than T(1/2).

4.
Dalton Trans ; (25): 3058-66, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16786064

RESUMEN

The photomagnetic properties of the following iron(II) complexes have been investigated: [Fe(L1)2][BF4]2, [Fe(L2)2][BF4]2, [Fe(L2)2][ClO4]2, [Fe(L3)2][BF4]2, [Fe(L3)2][ClO4]2 and [Fe(L4)2][ClO4]2 (L1 = 2,6-di{pyrazol-1-yl}pyridine; L2 = 2,6-di{pyrazol-1-yl}pyrazine; L3 = 2,6-di{pyrazol-1-yl}-4-{hydroxymethyl}pyridine; and L4 = 2,6-di{4-methylpyrazol-1-yl}pyridine). Compounds display a complete thermal spin transition centred between 200-300 K, and undergo the light-induced excited spin state trapping (LIESST) effect at low temperatures. The T(LIESST) relaxation temperature of the photoinduced high-spin state for each compound has been determined. The presence of sigmoidal kinetics in the HS --> LS relaxation process, and the observation of LITH hysteresis loops under constant irradiation, demonstrate the cooperative nature of the spin transitions undergone by these materials. All the compounds in this study follow a previously proposed linear relation between T(LIESST) and their thermal spin-transition temperatures T(1/2): T(LIESST) = T(0)- 0.3T(1/2). T(0) for these compounds is identical to that found previously for another family of iron(II) complexes of a related tridentate ligand, the first time such a comparison has been made. Crystallographic characterisation of the high- and low-spin forms, the light-induced high-spin state, and the low-spin complex [Fe(L4)2][BF4]2, are described.

5.
Dalton Trans ; (6): 823-30, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16437177

RESUMEN

The syntheses, magnetochemistry and crystallography of [Fe(L1)2]I0.5[I3]1.5 (1), [Fe(L1)2][Co(C2B9H11)2]2 (2) and [Fe(L2)2][SbF6]2 (3) (L1 = 2,6-di(pyrazol-1-yl)pyridine; L2 = 2,6-di(3-methylpyrazol-1-yl)pyridine) are described. Compounds 1 and 3 are high-spin between 5-300 K. For 1, this reflects a novel variation of an angular Jahn-Teller distortion at the iron centre, which traps the molecule in its high-spin state. No such distortion is present in 3; rather, the high-spin nature of this compound may reflect ligand conformational strain caused by an intermolecular steric contact in the crystal lattice. Compound 2 exhibits a gradual high --> low spin transition upon cooling with T(1/2) = 318 +/- 3 K, that is only 50% complete. This reflects the presence of two distinct, equally populated iron environments in the solid. One of these unique iron centres adopts the same angular structural distortion shown by 1 and so is trapped in its high-spin state, while the other, which undergoes the spin-crossover, has a more regular coordination geometry. In contrast with 3, the solvated salts [Fe(L2)2][BF4]2 x 4 CH3CN and [Fe(L2)2][ClO4]2 x (CH3)2CO both undergo gradual thermal spin-transitions centred at 175 +/- 3 K.


Asunto(s)
Química/métodos , Compuestos Ferrosos/química , Pirazoles/química , Piridinas/química , Cationes , Cristalización , Cristalografía , Cristalografía por Rayos X , Ligandos , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Conformación Proteica , Sales (Química)/química , Espectrofotometría Ultravioleta , Temperatura
6.
Dalton Trans ; (9): 1693-700, 2005 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-15852120

RESUMEN

Single crystal X-ray structures and susceptibility data are described for six homoleptic iron(II) complex salts, of 2,6-di(pyrazol-1-yl)pyridine or a 3,3"-disubstituted derivative of it. Zero field Mossbauer spectroscopic data for four of the complexes, and one previously reported analogue, are also discussed. Four of these compounds exhibit an unusual angular Jahn-Teller distortion towards C(2) symmetry to differing degrees, while the other two exhibit structures close to the "ideal" D(2d) symmetry for this ligand set. This structural distortion has two components: a twisting of the plane of one ligand relative to the other about the N{pyridine}-Fe-N{pyridine} vector, so that the two ligands are no longer perpendicular; and a rotation of one ligand about the Fe ion, so that the N{pyridine}-Fe-N{pyridine} angle < 180 degrees. Susceptibility data show that all the complexes are fully high-spin between 5 and 300 K, but yield an unusually wide range of zero-field splitting parameters for the different compounds of between 2.6 and 13.4 cm(-1). Magnetostructural correlations suggest that a low value of |D| is diagnostic for a high degree of "rotation" distortion. The Mossbauer spectra imply that an increased quadrupole splitting might also be diagnostic for the presence of the angular distortion.

7.
Dalton Trans ; (1): 65-9, 2004 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15356743

RESUMEN

The spin crossover compounds [FeL2](BF4)2, L=2,6-di(3-methylpyrazol-1-yl)pyrazine and [FeL2](ClO4)2 have very unusual two stage spin transitions which are initially steep and then become more gradual. A detailed variable temperature single crystal X-ray diffraction study has shown that the course of the spin transition is controlled by an order-disorder transition in the counter anions. The high and low spin states both crystallise in the tetragonal space group I4, the structures of the high and low spin states are presented at 290 and 30 K, respectively. The title compounds are shown to undergo LIESST (Light Induced Excited Spin State Trapping) under irradiation with either red or green laser light with wavelengths of 632.8 and 532.06 nm, respectively, at 30 K. The cell parameters for the tetragonal photo-induced metastable high spin state at this temperature are a= 9.169(6), c= 17.77(1) A for [FeL2](ClO4)2 with an increase in unit cell volume of 21 A3, and a= 9.11(1), c= 17.75(2) A and an increase in volume of 42.8 A3 for [FeL2](BF4)2.

8.
Acta Crystallogr B ; 60(Pt 1): 41-5, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14734843

RESUMEN

The crystal structure of the iron(II) spin-crossover compound [Fe(C(10)H(8)N(6))(2)](ClO(4))(2) in the high-spin state has been solved from powder X-ray diffraction data using the DASH program and refined using Rietveld refinement. The thermal spin transition has been monitored by following the change in unit-cell parameters with temperature. The title compound has been found to undergo a crystallographic phase change, involving a doubling of the crystallographic a axis, on undergoing the spin transition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA