Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(13): e33967, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071718

RESUMEN

Magnesium, valued for its lightweight, recyclability, and biocompatibility, faces challenges like its poor wear behavior and mechanical properties that limit its adaptation for a multitude of applications. In this study, various statistical analyses, and machine learning (ML) techniques were employed to optimize equal channel angular pressing (ECAP) process parameters for improving the wear behavior of Mg-3wt.% Zn-0.7 wt% Ca alloy. ECAP was conducted up to four passes via route Bc at 250 °C. Wear testing of both as-annealed (AA) and ECAP-processed alloys was performed using the dry ball-on-flat wear method under varying loads, speeds, and time. One pass (1P) and 4Bc-ECAP resulted in a notable uniform grain refinement of 86 % and 91 %, respectively, compared to the AA. X-ray diffraction (XRD) analysis confirmed a refined structure attributed to extensive dynamic recrystallization. Mechanical wear testing revealed a significant reduction in volume loss (VL), up to 56 % and 28.5 % after 1P and 4Bc samples, respectively, compared to the AA sample, supported by the observed texture intensity. The coefficient of friction (COF) stabilizes at 0.30-0.45, indicating low friction characteristics. Next, by adjusting wear load and speed through design of experiments (DOE), the wear output responses, VL and COF, were experimentally investigated. The output responses were predicted in the second step using ML, 3D response surface plots, and statistical analysis of variance (ANOVA). According to the regression model, the minimal VL was attained at a 5 N applied load. Also, the wear speed and VL at different passes are inversely proportional. On the other hand, the optimal COF was obtained at applied load about 2-3 N and 250 mm/s at different passes. The wear process variables were then optimized using different optimization techniques namely, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm (MOGA) approaches.

2.
Sci Rep ; 14(1): 9233, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649457

RESUMEN

The present research applies different statistical analysis and machine learning (ML) approaches to predict and optimize the processing parameters on the wear behavior of ZK30 alloy processed through equal channel angular pressing (ECAP) technique. Firstly, The ECAPed ZK30 billets have been examined at as-annealed (AA), 1-pass, and 4-passes of route Bc (4Bc). Then, the wear output responses in terms of volume loss (VL) and coefficient of friction (COF) have been experimentally investigated by varying load pressure (P) and speed (V) using design of experiments (DOE). In the second step, statistical analysis of variance (ANOVA), 3D response surface plots, and ML have been employed to predict the output responses. Subsequently, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm techniques have been used to optimize the input variables. The experimental results of ECAP process reveal a significant reduction in the average grain size by 92.7% as it processed through 4Bc compared to AA counterpart. Furthermore, 4Bc exhibited a significant improvement in the VL by 99.8% compared to AA counterpart. Both regression and ML prediction models establish a significant correlation between the projected and the actual data, indicating that the experimental and predicted values agreed exceptionally well. The minimal VL at different ECAP passes was obtained at the highest condition of the wear test. Also, the minimal COF for all ECAP passes was obtained at maximum wear load. However, the optimal speed in the wear process decreased with the number of billets passes for minimum COF. The validation of predicted ML models and VL regression under different wear conditions have an accuracy range of 70-99.7%, respectively.

3.
Micromachines (Basel) ; 14(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37893410

RESUMEN

This article presents the results of an experimental investigation into the effect of process parameters in the precision hard turning of Ti-6Al-4V on chip morphology at both macro and micro levels. It also reports on the control of chip generation to improve chip evacuation and breakability at the macro level by varying the process parameters, namely, feed rate, cutting speed and depth of cut during turning tests. A scanning electron microscope (SEM) was used to examine the chips produced for a better understanding of chip curling mechanisms at the micro level. Surface roughness of the machined specimens was measured to assess the effect of chip evacuation on obtainable surface quality. From the results, it was found that the interaction of process parameters has a significant effect on the control of chip formation. In particular, the interaction of higher cutting speeds and greater depths of cut produced chip entanglement with the workpiece for all values of feed rates. Using relatively higher feed rates with a low depth of cut showed good results for chip breaking when machining at higher cutting speeds. Different chip curling mechanisms were identified from the SEM results. Chip side-curl formation showed different segmentation patterns with an approximately uniform chip thickness along the chip width, while chip up-curl occurred due to variations in chip thickness. Finally, it was found that the tangling of the chip with the workpiece has a significant effect on the final surface quality.

4.
Materials (Basel) ; 15(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36363310

RESUMEN

Experimental investigations were conducted on Mg-3Zn-0.6Zr alloy under different ECAP conditions of number of passes, die angles, and processing route types, aimed at investigating the impact of the ECAP parameters on the microstructure evolution, corrosion behavior, and mechanical properties to reach optimum performance characteristics. To that end, the response surface methodology (RSM), analysis of variance, second-order regression models, genetic algorithm (GA), and a hybrid RSM-GA were utilized in the experimental study to determine the optimum ECAP processing parameters. All of the anticipated outcomes were within a very small margin of the actual experimental findings, indicating that the regression model was adequate and could be used to predict the optimization of ECAP parameters. According to the results of the experiments, route Bc is the most efficient method for refining grains. The electrochemical impedance spectroscopy results showed that the 4-passes of route Bc via the 120°-die exhibited higher corrosion resistance. Still, the potentiodynamic polarization results showed that the 4-passes of route Bc via the 90°-die demonstrated a better corrosion rate. Furthermore, the highest Vicker's microhardness, yield strength, and tensile strength were also disclosed by four passes of route Bc, whereas the best ductility at fracture was demonstrated by two passes of route C.

5.
Polymers (Basel) ; 14(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080660

RESUMEN

The machining of polymers has become widely common in several components of industry 4.0 technology, i.e., mechanical and structural components and chemical and medical instruments, due to their unique characteristics such as: being strong and light-weight with high stiffness, chemical resistance, and heat and electricity insolation. Along with their properties, there is a need to attain a higher quality surface finish of machined parts. Therefore, this research concerns an experimental and analytical study dealing with the effect of process parameters on process performance during the turning two different types of polymers: high-density polyethylene (HDPE) and unreinforced polyamide (PA6). Firstly, the machining output responses (surface roughness (Ra), material removal rate (MRR), and chip formation (λc)) are experimentally investigated by varying cutting speed (vc), feed rate (f), and depth of cut (d) using the full factorial design of experiments (FFD). The second step concerns the statistical analysis of the input parameters' effect on the output responses based on the analysis of variance and 3D response surface plots. The last step is the application of the RSM desirability function, genetic algorithm (GA), and hybrid FFD-GA techniques to determine the optimum cutting conditions of each output response. The lowest surface roughness for HDPE was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1.47 mm and for PA6 it was obtained at vc = 50 m/min, f = 0.01 mm/rev, and d = 1 mm. The highest material removal rate was obtained at vc = 150 m/min, f = 0.01 mm/rev, and d = 1.5 mm for both materials. At f = 0.01 mm/rev, d = 1.5 mm, and vc = 100 for HDPE, and vc = 77 m/min for PA6, the largest chip thickness ratios were obtained. Finally, the multi-objective genetic algorithm (MOGA) methodology was used and compared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA