Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 11(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36851216

RESUMEN

Vaccination remains the leading control method against infectious bronchitis (IB) in poultry despite the frequently observed IB outbreaks in vaccinated flocks. Here, two vaccination regimes were evaluated against challenge with the Massachusetts (Mass) infectious bronchitis virus (IBV) strain that was linked to egg production defects in Western Canada. One vaccination strategy included live attenuated IB vaccines only, and the other used both inactivated and live attenuated IB vaccines. The two immunization programs involved priming with a monovalent live attenuated IB vaccine (Mass serotype) at day-old, followed by intervals of bivalent live attenuated IB vaccines containing the Mass and Connecticut (Conn) serotypes given to the pullets at 2-, 5-, 9-, and 14-week-old. Inactivated IB vaccine (Mass serotype) was administrated to only one group of the vaccinated birds at 14-week-old. At the peak of lay, the hens were challenged with the Mass IBV isolate (15AB-01) via the oculo-nasal route. The efficacy of the vaccines was assessed following the challenge by observing clinical signs, egg production, egg quality parameters, seroconversion, and systemic T-cell subsets (CD4+ and CD8+ cells). Moreover, the viral genome loads in the oropharyngeal (OP) and cloacal (CL) swabs were quantified at predetermined time points. At 14 days post-infection (dpi), all the hens were euthanized, and different tissues were collected for genome load quantification and histopathological examination. Post-challenge, both vaccination regimes showed protection against clinical signs and exhibited significantly higher albumen parameters, higher anti-IBV serum antibodies, and significantly lower levels of IBV genome loads in OP swabs (at 3 and 7 dpi) and trachea and cecal tonsils compared to the mock-vaccinated challenged group. However, only the birds that received live attenuated plus inactivated IB vaccines had significantly lower IBV genome loads in CL swabs at 7 dpi, as well as decreased histopathological lesion scores and IBV genome loads in magnum compared to the mock-vaccinated challenged group, suggesting a slightly better performance for using live attenuated and inactivated IB vaccines in combination. Overall, the present findings show no significant difference in protection between the two vaccination regimes against the Mass IBV challenge in laying hens.

2.
Genes (Basel) ; 13(9)2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36140785

RESUMEN

Genetic diversity and evolution of infectious bronchitis virus (IBV) are mainly impacted by mutations in the spike 1 (S1) gene. This study focused on whole genome sequencing of an IBV isolate (IBV/Ck/Can/2558004), which represents strains highly prevalent in Canadian commercial poultry, especially concerning features related to its S1 gene and protein sequences. Based on the phylogeny of the S1 gene, IBV/Ck/Can/2558004 belongs to the GI-17 lineage. According to S1 gene and protein pairwise alignment, IBV/Ck/Can/2558004 had 99.44-99.63% and 98.88-99.25% nucleotide (nt) and deduced amino acid (aa) identities, respectively, with five Canadian Delmarva (DMV/1639) IBVs isolated in 2019, and it also shared 96.63-97.69% and 94.78-97.20% nt and aa similarities with US DMV/1639 IBVs isolated in 2011 and 2019, respectively. Further homology analysis of aa sequences showed the existence of some aa substitutions in the hypervariable regions (HVRs) of the S1 protein of IBV/Ck/Can/2558004 compared to US DMV/1639 isolates; most of these variant aa residues have been subjected to positive selection pressure. Predictive analysis of potential N-glycosylation and phosphorylation motifs showed either loss or acquisition in the S1 glycoprotein of IBV/Ck/Can/2558004 compared to S1 of US DMV/1639 IBV. Furthermore, bioinformatic analysis showed some of the aa changes within the S1 protein of IBV/Ck/Can/2558004 have been predicted to impact the function and structure of the S1 protein, potentially leading to a lower binding affinity of the S1 protein to its relevant ligand (sialic acid). In conclusion, these findings revealed that the DMV/1639 IBV isolates are under continuous evolution among Canadian poultry.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Enfermedades de las Aves de Corral , Aminoácidos/genética , Animales , Canadá , Pollos , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Genotipo , Glicoproteínas/genética , Virus de la Bronquitis Infecciosa/genética , Ligandos , Ácido N-Acetilneuramínico , Nucleótidos , Aves de Corral
3.
Vet World ; 14(8): 2131-2141, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34566331

RESUMEN

BACKGROUND AND AIM: Highly pathogenic avian influenza H5N8 virus of clade 2.3.4.4 was newly emerged to Egypt and firstly detected in carcasses of wild birds in November 2016. This study assessed the protection efficacy and virus shedding reduction of three different inactivated avian influenza (AI) H5 (H5N1, H5N2, and H5N3) commercial vaccines against challenge with two newly emerging highly pathogenic AI virus H5N8 Egyptian isolates in specific-pathogen-free (SPF) chicks. MATERIALS AND METHODS: 10-day-old SPF chicks (n=260) were divided into 20 groups (n=13). Groups 1-5 were vaccinated through the subcutaneous route (S/C) with 0.5 mL of H5N1 vaccine, Groups 6-10 were vaccinated (S/C) with 0.5 mL of H5N2 vaccine, and Groups 11-15 were vaccinated (S/C) with 0.5 mL of H5N3 vaccine. Positive control groups (16-19) were challenged at 25 and 31 days old (2 and 3 weeks post-vaccination [PV]) using H5N8 clade 2.3.4.4 A/duck/Egypt/F13666A/2017(H5N8) and H5N8 clade 2.3.4.4 A/chicken/Egypt/18FL6/2018(H5N8). Group 20 was left non-vaccinated as a control. All vaccinated groups were divided and challenged with both viruses at 25 and 31 days of age. The viral challenge dose was 0.1 mL of 106 EID50/0.1 mL titer/chick, and it was administered oronasally. All chicks were kept in isolators for 14 days after each challenge. Sera samples were collected weekly and at 2 weeks post-challenge (PC) to detect a humoral immune response. PC mortalities were recorded daily for 10 days to calculate the protection percentages. Tracheal swabs were collected from the challenged chicks in different groups at 3, 5, 7, and 10 days PC. Kidneys and spleens were collected at 3, 5, 7, and 10 days PC and kept in formalin for histopathological examination to assess lesions and severity scores. Tracheal swabs were inoculated in 10-day-old SPF embryonated chicken eggs for virus titration and to calculate shedding levels. RESULTS: All studied vaccines displayed 70-100% protection within 10 days PC. Hemagglutination inhibition results from sera samples revealed antibody titers ranging from 0.6 to 5.4 log2 starting at 1-week PV with the highest titers at 4 weeks PV. Challenged SPF chickens exhibited a notable reduction in virus shedding, with an average of 1.5-2 log10, compared to control birds. Various histopathological lesions with different scores were detected. CONCLUSION: Our findings suggest that the inadequate virus shedding reduction and protection efficacy of studied vaccines were variable and that the type of vaccine to be used under field conditions should be reconsidered. Study of the variability between the Egyptian old emerged AI (AIV) 2017 H5N8 strains and the new emerging AIV 2018 H5N8 is required to achieve optimal protection and limit the current economic losses.

4.
Vet World ; 11(7): 977-985, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30147269

RESUMEN

AIM: In the present study, two experiments were carried out for studying the pathogenicity of H9N2 avian influenza virus (AIV) in broiler chickens after vaccination with different live respiratory viral vaccines. MATERIALS AND METHODS: One-day-old specific pathogen-free (SPF) chicks were divided into four groups in each experiment. In experiment 1, Groups 1 and 2 were inoculated with H9N2 AIV through nasal route in 1 day old, Groups 1 and 3 were vaccinated with live infectious bronchitis coronavirus (IBV) vaccine in 5 days old, and Group 4 was left as a negative control. In experiment 2, Groups 5 and 6 were inoculated with AIV subtype H9N2 through nasal route in 1 day old, Group 5 was vaccinated with live IBV vaccine and live Newcastle disease virus (NDV) vaccine in 5 and 18 days old, respectively, Groups 6 and 7 were vaccinated with live NDV vaccine in 18 days old, and Group 8 was left as a negative control. Chicks were kept in isolators for 18 days in the first experiment and 35 days in the second experiment. Tracheal and cloacal swabs were collected from 3, 5, 7, 10, 12, and 15 day's old chicks from all groups in experiment 1 and 21, 23, 25, and 28 days old from all groups in experiment 2. Quantitative real-time reverse-transcriptase polymerase chain reaction (rRT-PCR) was applied on the collected tracheal swabs for detecting RNA copies of H9N2 AIV. Cloacal swabs and the positive rRT-PCR tracheal swabs were inoculated in 10-day-old SPF embryonated chicken eggs (ECE) to confirm rRT-PCR results. Internal organs (kidney, trachea, and spleen) from all chicken groups were collected weekly for histopathological examination to determine severity of the lesions. Serum samples were collected on a weekly basis for the detection of humoral immune response against H9N2, NDV, and IBV from all chicken groups. RESULTS: rRT-PCR results with virus titration in ECEs revealed a significant increase in H9N2 AIV titer with extension in the period of viral shedding in Groups 1 and 5. Severe lesion score was observed for Groups 1 and 5. The humoral immune response against H9N2 AIV, NDV, and IBV revealed a significant increase in H9N2 AIV titer in Groups 1 and 5, NDV titer showed a significant increase in Group 7, and IBV titer increased in Groups 1, 3, and 5. CONCLUSION: Results demonstrated the increase in pathogenicity of H9N2 AIV, especially when H9N2-infected chicks vaccinated with live IBV vaccine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA