Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8573, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609385

RESUMEN

Textile industry wastewater containing toxic dyes and high COD poses environmental hazards and requires treatment before discharge. This study addresses the challenge of treating complex textile wastewater using a novel integrated system. The system combines sedimentation, screening, adsorption, and an optimized solar photo-Fenton process to provide a sustainable treatment solution. A novel parabolic collector with a larger absorber tube diameter enhances solar radiation utilization at lower catalyst concentrations. This design is versatile, treating all types of wastewaters, especially those that contain colors, smells, solid and suspended materials, in addition to its importance for the treatment of difficult substances that may be present in industrial and sewage wastewaters that are difficult to dispose of by traditional treatment methods. Multivariate experiments optimized key photo-Fenton parameters (pH, catalyst dose, etc.) achieving significant pollutant removal (85% COD, 82% TOC, complete color) under specific conditions (pH 3, 0.2 g/L Fe(II), 1 mL/L H2O2, 40 °C and 100 L/h flow rate after 60 min irradiation). Kinetic modeling revealed second-order reaction kinetics, and multivariate regression analysis led to the development of models predicting treatment efficiency based on process factors. The key scientific contributions are the integrated system design combining conventional and advanced oxidation technologies, novel collector configuration for efficient utilization of solar radiation, comprehensive process optimization through multivariate experiments, kinetic modeling and predictive modeling relating process factors to pollutant degradation. This provides an economical green solution for textile wastewater treatment and reuse along with useful design guidelines. The treatment methodology and modeling approach make valuable additions for sustainable management of textile industry wastewater.

2.
Sci Rep ; 13(1): 19597, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949960

RESUMEN

Chromium is a hazardous compound from industrial processes, known for its toxicity, mutagenicity, teratogenicity, and carcinogenicity. Chemical methods are efficient but cost-effective alternatives with reduced sludge are sought. Electro-coagulation, utilizing low-cost iron plate electrodes, was explored for factual tannery wastewater treatment in this manuscript. Operating parameters such as initial chromium concentration, voltage, electrode number, operating time, agitation speed and current density has been studied to evaluate the treatment effeciency. Under optimal conditions (15 V, 0.4 mA/cm2, 200 rpm, 330 ppm chromium, 8 iron electrodes with a total surface area of 0.1188 m2, 3 h), chromium elimination was 98.76%. Iron anode consumption, power use, and operating cost were 0.99 gm/L, 0.0143 kW-h/L, and 160 EGP/kg of chromium eliminated, respectively. Kinetics studies were pursued first-order reaction (97.99% correlation), and Langmuir isotherms exhibited strong conformity (Langmuir R2: 99.99%). A predictive correlation for chromium elimination (R2: 97.97%) was developed via statistical regression. At HARBY TANNERY factory in Egypt, industrial sewage treatment achieved a final chromium disposal rate of 98.8% under optimized conditions.

3.
Int J Biol Macromol ; 253(Pt 4): 127058, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37769760

RESUMEN

This study synthesized new cellulose-based hydrogels, namely cellulose and cellulose/poly acrylic acid, using cellulose extracted from rice straw via alkaline and acidic pulping processes. The research demonstrated alkaline treatment with sodium hydroxide to be more effective for cellulose extraction compared to acidic treatment. Hydrogel synthesis used graft polymerization and chemical crosslinking with potassium persulfate as initiator and epichlorohydrin as a crosslinker. Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TG), and scanning electron microscopy (SEM) characterized the prepared hydrogels. Important factors determining hydrogel competence are swelling ratio and water retention rate. The cellulose hydrogel exhibited the highest swelling ratio in tap water (9811%) with 76.25 wt% water retention and in artificial hard water (3121.43%) with 64.58 wt% retention after 4 days outdoors at 298 K. Finally, hydrogels were investigated extensively for agricultural applications. Fenugreek seeds germinated and grew well (67% germination after 7 days) in normal soil mixed with 10% cellulose hydrogel. Biodegradability testing exhibited 6% degradation after 40 days and 10% after 120 days in an open-air lab at room temperature and 60% humidity.


Asunto(s)
Hidrogeles , Oryza , Hidrogeles/química , Agua/química , Celulosa/química , Suelo/química
4.
Sci Rep ; 13(1): 3420, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36854762

RESUMEN

Advanced oxidation process, via photo-catalytic oxidation process was demonstrated in this study as one of the promising techniques of simulated oily wastewater treatment. Several effective factors such as initial oil concentration, catalyst dose, stirring speed (rpm), pH value and hydrogen peroxide (H2O2) dose influencing on the photo-catalytic degradation rate of oily wastewater were investigated. The catalyst used in this work was titanium dioxide (TiO2). The solubility of oil in water was increased using emulsifier. Results indicated that the photo-catalytic oxidation process has a good removal percentage of oil from oily wastewater reached to 98.43% at optimum operating parameters of 1 g/L initial oil concentration, 850 rpm, 8 pH, 3 mL H2O2 and 1.5 g/L of TiO2 after 40 min of irradiation time. The degradation reaction follows a first order kinetics with a correlation coefficient (R2) of 93.7%. Ultimately, the application of photo-catalytic oxidation processes at these optimum operating parameters on an industrial oily wastewater collected from an effluent stream of Ras Shukair at Red See supplied by Asuit Petrochemical Company was done in Egypt. The results showed that the best oil removal (99%) was achieved after adding 3 mL of H2O2 in a reaction time of 40 min compared to without adding H2O2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA