Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 21811, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071223

RESUMEN

The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.


Asunto(s)
Queso , Listeria monocytogenes , Nisina , Recuento de Colonia Microbiana , Queso/microbiología , Microbiología de Alimentos
2.
Micromachines (Basel) ; 13(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36557366

RESUMEN

Microencapsulation in emulsion droplets has great potential for various applications such as food which require formation of highly stable emulsions. Bacterial-emulsion interactions affect the physiological status of bacteria while bacterial cell characteristics such as surface-active properties and metabolic activity can affect emulsion stability. In this study, the viability and growth of two different bacterial species, Gram-negative Escherichia coli and Gram-positive Lactobacillus paracasei, encapsulated in water-in-oil (W/O) droplets or as planktonic cells, were monitored and their effect on droplet stability was determined. Microencapsulation of bacteria in W/O droplets with growth media or water was achieved by using a flow-focusing microfluidic device to ensure the production of highly monodispersed droplets. Stability of W/O droplets was monitored during 5 days of storage. Fluorescence microscopy was used to observe bacterial growth behaviour. Encapsulated cells showed different growth to planktonic cells. Encapsulated E. coli grew faster initially followed by a decline in viability while encapsulated L. paracasei showed a slow gradual growth throughout storage. The presence of bacteria increased droplet stability and a higher number of dead cells was found to provide better stability due to high affinity towards the interface. The stability of the droplets is also species dependent, with E. coli providing better stability as compared to Lactobacillus paracasei.

3.
Molecules ; 26(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810520

RESUMEN

A novel strategy involving Olive Leaf Extract (OLE) and Cold Atmospheric Plasma (CAP) was developed as a green antimicrobial treatment. Specifically, we reported a preliminary investigation on the combined use of OLE + CAP against three pathogens, chosen to represent medical and food industries (i.e., E. coli, S. aureus and L. innocua). The results indicated that a concentration of 100 mg/mL (total polyphenols) in OLE can exert an antimicrobial activity, but still insufficient for a total bacterial inactivation. By using plain OLE, we significantly reduced the growth of Gram positive S. aureus and L. innocua, but not Gram-negative E. coli. Instead, we demonstrated a remarkable decontamination effect of OLE + CAP in E. coli, S. aureus and L. innocua samples after 6 h. This effect was optimally maintained up to 24 h in S. aureus strain. E. coli and L. innocua grew again in 24 h. In the latter strain, OLE alone was most effective to significantly reduce bacterial growth. By further adjusting the parameters of OLE + CAP technology, e.g., OLE amount and CAP exposure, it could be possible to prolong the initial powerful decontamination over a longer time. Since OLE derives from a bio-waste and CAP is a non-thermal technology based on ionized air, we propose OLE + CAP as a potential green platform for bacterial decontamination. As a combination, OLE and CAP can lead to better antimicrobial activity than individually and may replace or complement conventional thermal procedures in food and biomedical industries.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Listeria/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Gases em Plasma/farmacología , Staphylococcus aureus/efectos de los fármacos , Microbiología Ambiental
4.
Food Res Int ; 141: 110126, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33641993

RESUMEN

Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.


Asunto(s)
Gases em Plasma , Bacterias , Biopelículas , Escherichia coli , Microbiología de Alimentos , Listeria , Gases em Plasma/farmacología
5.
RSC Adv ; 11(13): 7738-7749, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423274

RESUMEN

Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 µm in diameter containing an inner aqueous phase (W1) of about 40-50 µm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase.

6.
Int J Food Microbiol ; 320: 108540, 2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32044624

RESUMEN

Low-temperature long-time (LTLT) cooking may lead to risk of potential survival of pathogenic bacteria such as Clostridium perfringens in cooked meat. In this study, the effect of LTLT cooking on C. perfringens was investigated at temperatures commonly used by caterers. Brain heart infusion broth (BHIB) and meat cubes in pouches (vacuumed or non-vacuumed) were inoculated with C. perfringens (NCTC 8238) and heated at temperatures of 48 °C, 53 °C, 55 °C, 60 °C and 70 °C. The viability of C. perfringens in BHIB and meat was monitored using plate counting and the D-value of each thermal treatment was determined. The recovery of C. perfringens after thermal treatment was assessed using optical density measurements. Flow cytometry analysis was used to assess the physiological status (death/injury) of C. perfringens cells in BHIB. The results showed that the required log reduction (6-log) of C. perfringens can be achieved at 55 °C but not at 48 °C or 53 °C. The D-values at all temperatures were higher in meat compared to BHIB while the D-value at 55 °C was higher in non-vacuum compared to vacuum sealed meat. C. perfringens cells were able to recover and grow to pathogenic levels when thermal treatment was unable to achieve the required 6-log reduction. In BHIB, percentage of dead cells increased gradually at 48 °C, 53 °C and 55 °C while an immediate increase (>95%) was observed at 60 °C and 70 °C. These results are important to food safety authorities allowing to set the time-temperature combinations to be used in LTLT cooking to obtain safe meat.


Asunto(s)
Clostridium perfringens/fisiología , Culinaria/métodos , Inocuidad de los Alimentos , Carne Roja/microbiología , Animales , Bovinos , Recuento de Colonia Microbiana , Viabilidad Microbiana , Temperatura , Factores de Tiempo , Vacio
7.
Environ Sci Pollut Res Int ; 26(24): 25057-25070, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31250387

RESUMEN

Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 µg/mL or 8.5 µg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Grafito/farmacología , Óxidos/química , Pseudomonas putida/química , Antibacterianos/química , Grafito/química , Pseudomonas putida/fisiología , Espectroscopía Infrarroja por Transformada de Fourier
9.
Food Chem ; 257: 243-251, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29622206

RESUMEN

This study investigated the application of water-oil-water (W1/O/W2) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W1 and external W2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality.


Asunto(s)
Emulsiones , Enterococcaceae , Alimentos de Soja/microbiología , Zygosaccharomyces , Alcoholes/análisis , Alcoholes/metabolismo , Fermentación , Manipulación de Alimentos/métodos , Furanos/análisis , Furanos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Aceites/química , Cloruro de Potasio/química , Cloruro de Sodio/química , Cloruro de Sodio Dietético , Agua/química
10.
Food Res Int ; 107: 325-336, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29580492

RESUMEN

W1/O/W2 emulsion in set-type yogurt has the potential to segregate probiotics in order to avoid interference with the starter culture as well as protection against harsh processing and digestion conditions. Lactobacillus paracasei subsp. paracasei DC 412 probiotic cells in milk-based W1/O/W2 emulsions were incorporated in yogurt, in addition to starter cultures Lactobacillus bulgaricus and Streptococcus thermophilus, and the effect on the fermentation, bacterial growth kinetics, physicochemical properties, and structural characteristics was investigated. Stability of W1/O/W2 was monitored with optical microscopy and cryo-SEM and localisation of encapsulated L. paracasei in yogurt was monitored using fluorescent microscopy. During fermentation, starter culture was not affected by introduction of L. paracasei and/or W1/O/W2 emulsion. The viability of L. paracasei encapsulated in W1/O/W2 emulsion was enhanced during storage and after exposure to simulated gastrointestinal conditions. L. paracasei remained within the inner W1 phase till the end of the storage period (28 days at 4 °C). Moreover, W1/O/W2 emulsion altered physicochemical and textural properties; however, these were within acceptable range. These results demonstrate the capability of W1/O/W2 emulsion to be utilised for probiotic fortification of yogurt to increase functionality without interfering with starter culture and fermentation.


Asunto(s)
Lacticaseibacillus paracasei , Probióticos/uso terapéutico , Yogur/microbiología , Emulsiones , Probióticos/administración & dosificación
11.
Food Res Int ; 105: 333-343, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29433222

RESUMEN

Antagonism in mixed culture fermentation can result in undesirable metabolic activity and negatively affect the fermentation process. Water-oil-water (W1/O/W2) double emulsions (DE) could be utilized in fermentation for segregating multiple species and controlling their release and activity. Zygosaccharomyces rouxii and Tetragenococcus halophilus, two predominant microbial species in soy sauce fermentation, were incorporated in the internal W1 and external W2 phase of a W1/O/W2, respectively. The suitability of DE for controlling T. halophilus and Z. rouxii in soy sauce fermentation was studied in relation to emulsion stability and microbial release profile. The effects of varying concentrations of Z. rouxii cells (5 and 7logCFU/mL) and glucose (0%, 6%, 12%, 30% w/v) in the W2 phase were investigated. DE stability was determined by monitoring encapsulation stability (%), oil globule size, and microstructure with fluorescence and optical microscopy. Furthermore, the effect of DE on the interaction between T. halophilus and Z. rouxii was studied in Tryptic Soy Broth containing 10% w/v NaCl and 12% w/v glucose and physicochemical changes (glucose, ethanol, lactic acid, and acetic acid) were monitored. DE destabilization resulted in cell release which was proportional to the glucose concentration in W2. Encapsulated Z. rouxii presented higher survival during storage (~3 log). The application of DE affected microbial cells growth and physiology, which led to the elimination of antagonism. These results demonstrate the potential use of DE as a delivery system of mixed starter cultures in food fermentation, where multiple species are required to act sequentially in a controlled manner.


Asunto(s)
Emulsiones/química , Enterococcaceae/aislamiento & purificación , Fermentación/fisiología , Manipulación de Alimentos/métodos , Zygosaccharomyces/aislamiento & purificación , Técnicas de Cultivo de Célula , Composición de Medicamentos , Enterococcaceae/metabolismo , Glucosa/metabolismo , Viabilidad Microbiana , Alimentos de Soja/microbiología , Zygosaccharomyces/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA