Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 11(10)2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30274190

RESUMEN

In crystalline materials, dislocations are three-dimensional lattice distortions that systematically distort twin interfaces that they encounter. This results in dislocation dissociation events and changes in the atomic structure of the interface. The manner in which the interface distorts drive the product of the dissociation event, and consequently, the incident dislocation core and the magnitude and relative direction of the Burgers vector govern these slip-twin interaction phenomena. Recent characterization studies using transmission electron microscopy as well as advanced molecular dynamic simulations have shown that slip dislocations, whether striking or struck by a {10 1 ¯ 2} twin boundary, dissociate into a combination of twinning disconnections, interfacial disclinations (facets), jogs, and other types of dislocations engulfed inside the twin domains, called transmuted dislocations. While twinning disconnections were found to promote twin propagation, the dislocations incorporated inside the twin are of considerable importance to hardening and damage initiation as they more significantly obstruct slip dislocations accommodating plasticity of the twins. In this work, the dislocation transmutation event and its effect on hardening is captured using a dislocation density based hardening model contained in a visco-plastic self-consistent mean-field model. This is done by allowing the twins to increase their dislocation densities, not only by virtue of slip inside the twin, but also through dislocations that transmute from the parents as the twin volume fraction increases. A correspondence matrix rule is used to determine the type of converted dislocations while tracking and parameterizing their evolution. This hypothesis provides a modeling framework for capturing slip-twin interactions. The model is used to simulate the mechanical response of pure Mg and provides a more physically based approach for modeling stress-strain behavior.

2.
Materials (Basel) ; 9(8)2016 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-28773786

RESUMEN

The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

3.
Acta Biomater ; 7(3): 1228-40, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21095245

RESUMEN

The function of the bighorn sheep horn prompted quantification of the various parametric effects important to the microstructure and mechanical property relationships of this horn. These parameters included analysis of the stress-state dependence with the horn keratin tested under tension and compression, the anisotropy of the material structure and mechanical behavior, the spatial location along the horn, and the wet-dry horn behavior. The mechanical properties of interest were the elastic moduli, yield strength, ultimate strength, failure strain and hardness. The results showed that water has a more significant effect on the mechanical behavior of ram horn more than the anisotropy, location along the horn and the type of loading state. All of these parametric effects showed that the horn microstructure and mechanical properties were similar to those of long-fiber composites. In the ambient dry condition (10 wt.% water), the longitudinal elastic modulus, yield strength and failure strain were measured to be 4.0 G Pa, 62 MPa and 4%, respectively, and the transverse elastic modulus, yield strength and failure strain were 2.9 GPa, 37 MPa and 2%, respectively. In the wet condition (35 wt.% water), horn behaves more like an isotropic material; the elastic modulus, yield strength and failure strain were determined to be 0.6G Pa, 10 MPa and 60%, respectively.


Asunto(s)
Cuernos/química , Queratinas/química , Animales , Fenómenos Biomecánicos , Ovinos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA