Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(28): 24952-24963, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37483179

RESUMEN

The present work involves investigating an unexplored soft-chemical method for synthesizing nanostructured ZnO through biopolymer gelation. Our objective was to exploit (i) the difference in the gelation mechanism of four tested biopolymers, namely, alginate, chitosan, carboxymethylcellulose (CMC), and pectin and (ii) numerous experimental parameters that govern this process in order to allow the control of the growth of nanostructured ZnO, with a view to using the prepared oxides as photocatalysts for the oxidation of the Orange G dye. So, the effect of biopolymer's nature on the microstructural, morphological, and textural properties was examined by thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, field-emission gun-scanning electron microscopy-high resolution (FEG-SEM) with energy-dispersive spectrometry (SEM-EDS), ultraviolet-visible (UV-vis) spectroscopy, and N2 adsorption/desorption. As-prepared oxides were crystallized in a hexagonal wurtzite structure, with a clear difference in their morphologies. The sample prepared by using chitosan has a specific surface area of around 36.8 m2/g in the form of aggregated and agglomerated nanostructured minirods and thus shows the best photocatalytic performance with 99.3% degradation of the Orange G dye in 180 min.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA