Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(51): 111525-111535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37816968

RESUMEN

The current study is about the synthesis of nanoparticles (NPs) of cobalt oxide (CO) and cobalt sulfide (CS) followed by their nanocomposites as CO/CS and CO/CS/CNT by ultrasonication approach. The addition of carbon-based materials in the oxides and sulfides enhances their performance by developing physico-chemical interactions. Prepared NPs were utilized for the photodegradation of organic contaminants. The characteristics, as well as the efficiency of the prepared samples, have been systematically examined by X-ray diffraction (XRD) technique, Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Photocatalytic activities of bare samples and synthesized nanocomposites were tested for the degradation of methyl orange (MO) using a xenon lamp. The percentage degradation of dye was 24.14%, 57.94%, 71.66%, and 85.04% in the presence of CO, CS, CO/CS, and CO/CS/CNT, respectively. Crystal violet (CV), Rhodamine B (rho-B), and industrial wastewater were also degraded by the ternary composite. The comparative studies showed the best performance of CO/CS/CNT, which enhanced the generation of electron-hole pairs by absorption of photons of incoming radiations, increased charge separation, and maximum surface area for adsorption.


Asunto(s)
Nanocompuestos , Aguas Residuales , Óxidos , Fotólisis , Nanocompuestos/química , Catálisis
2.
Int J Biol Macromol ; 250: 126248, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562465

RESUMEN

The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO2 and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD600) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD600 values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO2-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.


Asunto(s)
Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Hidrogeles/farmacología , Hidrogeles/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Magnesio/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Óxidos/farmacología , Materiales Biocompatibles/farmacología , Nanopartículas del Metal/química , Bacterias , Agua/farmacología , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Nanocompuestos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA