Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Microsc ; 286(1): 3-12, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34879153

RESUMEN

Superconducting windings will be necessary in future fusion reactors to generate the strong magnetic fields needed to confine the plasma, and these superconducting materials will inevitably be exposed to neutron damage. It is known that this exposure results in the creation of isolated damage cascades, but the presence of these defects alone is not sufficient to explain the degradation of macroscopic superconducting properties and a quantitative method is needed to assess the subtle lattice damage in between the clusters. We have studied REBCO-coated conductors irradiated with neutrons to a cumulative dose of 3.3 × 1022  n/m2  that show a degradation of both Tc  and Jc values, and use HRTEM analysis to show that this irradiation introduces ∼10 nm amorphous collision cascades. In addition, we introduce a new method for the analysis of these images to quantify the degree of lattice disorder in the apparently perfect matrix between these cascades. This method utilises Fast Fourier and Discrete Cosine Transformations of a statistically relevant number of HRTEM images of pristine, neutron-irradiated and amorphous samples and extracts the degree of randomness in terms of entropy values. Our results show that these entropy values in both mid-frequency band FFT and DCT domains correlate with the expected level of lattice damage, with the pristine samples having the lowest and the fully amorphous regions the highest entropy values.  Our methodology allows us to quantify 'invisible' lattice damage to and correlate these values to the degradation of superconducting properties, and also has relevance for a wider range of applications in the field of electron microscopy where small changes in lattice perfection need to be measured.

2.
Sci Rep ; 6: 27783, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27301665

RESUMEN

The effects of isotropic artifical defects, introduced via fast neutron (E > 0.1 MeV) irradiation, on the physical properties of differently (Co, P and K) doped BaFe2As2 superconducting single crystals were studied. The Co- and P-doped single crystals showed a second peak in the magnetization curve (fishtail effect) in the pristine state. Significant variations in the radiation-induced changes in the critical current density Jc were observed in the different types of crystal, while the irreversibility fields did not change remarkably. The highest Jcs were obtained for the K-doped crystal, exceeding 3 × 10(10) Am(-2) (T = 5 K, B = 4 T) and remaining above 8.5 × 10(9) Am(-2) at 30 K and 1 T. The pinning force was analyzed to compare the pinning mechanisms of the individual samples. While distinct differences were found before the irradiation, the same pinning behavior prevails afterwards. The pinning efficiency η = Jc/Jd was estimated from the depairing current density Jd. η was similar in all irradiated crystals and comparable to the value in neutron irradiated cuprates, suggesting that the huge critical current densities measured in the irradiated K-doped crystal are due to its large depairing current density, making this compound the most promising for applications.

3.
Sci Rep ; 5: 10236, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26030255

RESUMEN

We report non-Cu critical current densities of 4. 09 ⋅ 10(9) A/m(2) at 12 T and 2.27 ⋅ 10(9) A/m(2) at 15 T obtained from transport measurements on a Ti-alloyed RRP Nb3Sn wire after irradiation to a fast neutron fluence of 8.9 ⋅ 10(21) m(-2). These values are to our knowledge unprecedented in multifilamentary Nb3Sn, and they correspond to a Jc enhancement of approximately 60% relative to the unirradiated state. Our magnetometry data obtained on short wire samples irradiated to fast neutron fluences of up to 2.5 ⋅ 10(22) m(-2) indicate the possibility of an even better performance, whereas earlier irradiation studies on bronze-processed Nb3Sn wires with a Sn content further from stoichiometry attested a decline of the critical current density at such high fluences. We show that radiation induced point-pinning centers rather than an increase of the upper critical field are responsible for this Jc enhancement, and argue that these results call for further research on pinning landscape engineering.

4.
Rev Sci Instrum ; 82(6): 063902, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21721704

RESUMEN

We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.

5.
Phys Rev Lett ; 90(24): 247002, 2003 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12857216

RESUMEN

The influence of anisotropy on the transport current in MgB(2) polycrystalline bulk samples and wires is discussed. A model for the critical current density is proposed, which is based on anisotropic London theory, grain boundary pinning, and percolation theory. The calculated currents agree convincingly with experimental data, and the fit parameters, especially the anisotropy, obtained from percolation theory agree with experiment or theoretical predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA