Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 12(21): 5471-80, 2006 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-16680791

RESUMEN

The trinuclear ferrocenophane [{Fe(eta(5)-C(5)H(4))(3)}(2)Ga(2)] (3) featuring two sp(2)-hybridized gallium atoms in bridging positions between three ferrocene-1,1'-diyl units represents a novel type of ferrocene derivative. Compound 3 is obtained by thermal treatment of 1,1'-bis(dimethylgallyl)ferrocene (1) in nondonor solvents or in diethyl ether as solvent and subsequent thermal decomplexation. The [1.1]ferrocenophane [{Fe(eta(5)-C(5)H(4))(2)}(2){GaMe}(2)] (2) is an intermediate in the formation of 3. The reaction of 3 with an excess of trimethylgallium leads back to 1 and proves the reversibility of the multistep reaction sequence. Theoretical calculations reveal a carousel-type D(3h) structure for 3. The compound can best be described as being composed of three only weakly interacting ferrocenediyl units covalently connected by gallium atoms without any pi-bond contribution in the Ga--C bonds. Owing to steric constraints 3 cannot be reduced to the dianion 3(2-), which would feature a Ga--Ga bond. Compound 3 represents a stereochemically rigid difunctional Lewis acid allowing the formation of the adducts 3 a-3 d possessing linear donor-aceptor-aceptor-donor arrangements. Crystal structure data for 3 a-3 d show a symmetry-reduced chiral ferrocenophane core (D(3h)-->D(3)). A polymeric rodlike structure is observed for 3 b and 3 d caused by pi-stacking effects (3 b) or by a difunctional donor-acceptor interaction (3 d). In solution, the chirality of the adducts is lost by rapid interconversion of the enantiomers. A cyclic voltammogram of 3 b in pyridine reveals three quasi-reversible oxidation steps at -356, -154, and 8 mV, indicating only weak electron delocalization in the cationic species. The redox potentials of the pyridine adduct 3 b are compared with those of other pyridine-stabilized gallyl-sustituted ferrocene derivatives and with ferrocene itself.

2.
Inorg Chem ; 43(8): 2585-9, 2004 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15074977

RESUMEN

The 1,4-diphosphabuta-1,3-diene (DPB) ligand as a tool for stabilizing anionic group 13 (B, Al, Ga) and neutral group 14 (C, Si, Ge) cyclic Arduengo-type carbenes is studied by quantum chemical calculations at density functional level. Accordingly, for the former group this ligand is better suited than the corresponding 1,4-diazabuta-1,3-diene (DAB) ligand. It results in larger electron affinities for the corresponding doublet states. For the latter group the DPB ligand yields essentially smaller singlet-triplet separations than the DAB ligand. An exception is the anionic boron compound with relative low singlet stability for both the DAB and DPB ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA