Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Occup Environ Hyg ; 11(6): 388-96, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24275016

RESUMEN

Respiratory protection provided by a particulate respirator is a function of particle penetration through filter media and through faceseal leakage. Faceseal leakage largely contributes to the penetration of particles through a respirator and compromises protection. When faceseal leaks arise, filter penetration is assumed to be negligible. The contribution of filter penetration and faceseal leakage to total inward leakage (TIL) of submicron-size bioaerosols is not well studied. To address this issue, TIL values for two N95 filtering facepiece respirator (FFR) models and two surgical mask (SM) models sealed to a manikin were measured at 8 L and 40 L breathing minute volumes with different artificial leak sizes. TIL values for different size (20-800 nm, electrical mobility diameter) NaCl particles representing submicron-size bioaerosols were measured using a scanning mobility particle sizer. Efficiency of filtering devices was assessed by measuring the penetration against NaCl aerosol similar to the method used for NIOSH particulate filter certification. Results showed that the most penetrating particle size (MPPS) was ∼45 nm for both N95 FFR models and one of the two SM models, and ∼350 nm for the other SM model at sealed condition with no leaks as well as with different leak sizes. TIL values increased with increasing leak sizes and breathing minute volumes. Relatively, higher efficiency N95 and SM models showed lower TIL values. Filter efficiency of FFRs and SMs influenced the TIL at different flow rates and leak sizes. Overall, the data indicate that good fitting higher-efficiency FFRs may offer higher protection against submicron-size bioaerosols.


Asunto(s)
Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , Filtración/instrumentación , Exposición por Inhalación/prevención & control , Máscaras/normas , Ensayo de Materiales/métodos , Tamaño de la Partícula , Dispositivos de Protección Respiratoria/normas , Diseño de Equipo/normas , Exposición por Inhalación/análisis , Maniquíes , National Institute for Occupational Safety and Health, U.S./normas , Frecuencia Respiratoria , Cloruro de Sodio/análisis , Estados Unidos
2.
J Occup Environ Hyg ; 10(9): 496-504, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23927376

RESUMEN

National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) are used for respiratory protection in some workplaces handling engineered nanomaterials. Previous NIOSH research has focused on filtration performance against nanoparticles. This article is the first NIOSH study using human test subjects to compare N95 FFR faceseal leakage (FSL) performance against nanoparticles and "all size" particles. In this study, estimates of FSL were obtained from fit factor (FF) measurements from nine test subjects who participated in previous fit-test studies. These data were analyzed to compare values obtained by: 1) using the PortaCount Plus (8020A, TSI, Inc., MN, USA) alone (measureable particle size range 20 nm to > 1,000 nm, hereby referred to as the "all size particles test"), and 2) using the PortaCount Plus with N95-Companion(TM) accessory (8095, TSI, Inc., Minn.) accessory (negatively charged particles, size range ∼40 to 60 nm, hereby referred to as the "nanoparticles test"). Log-transformed FF values were compared for the "all size particles test" and "nanoparticles test" using one-way analysis of variance tests (significant at P < 0.05). For individual FFR models, geometric mean (GM) FF using the "nanoparticles test" was the same or higher than the GM FFs using "all size particles test." For all three FFR models combined, GM FF using the "nanoparticles test" was significantly higher than the GM FF using "all size particles test" (P < 0.05). These data suggest that FSL for negatively charged ∼40-60 nm nanoparticles is not greater than the FSL for the larger distribution of charged and uncharged 20 to > 1,000 nm particles.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Exposición Profesional/prevención & control , Dispositivos de Protección Respiratoria , Diseño de Equipo , Filtración/métodos , Humanos , Ensayo de Materiales , Nanopartículas , National Institute for Occupational Safety and Health, U.S. , Tamaño de la Partícula , Estados Unidos
3.
J Occup Environ Hyg ; 10(10): 527-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23984654

RESUMEN

A previous study in our laboratory measured the ratio of particle concentration outside (Cout)/inside (Cin) of three N95 filtering facepiece respirator (FFR) models with an N95-Companion and other aerosol instruments using a breathing manikin. Results showed that the Companion measured Cin was contributed by particle penetration through face seal leakage and not through filter media suggesting that the Cout/Cin ratio should be similar for different N95 models at any given leak size. To better understand the phenomenon, the current study analyzed the influence of factors, including filter penetration, resistance, and flow rate on the Companion ratios for two N95 FFR (N1 and N2) and one surgical mask (SM1) models using a manikin. Cout/Cin ratios were measured at 10 and 40 L breathing minute volumes with sealed condition and at artificially introduced leaks. Filter efficiency and resistance were measured at 10 and 40 L/min constant flow rates. Results showed that filter efficiency and resistance were higher for N1 than for N2 and SM1. The ratio for N1was also higher than those of N2 and SM1 at sealed condition at both breathing rates. The result can be due to the higher filtration efficiency of N1. With increasing leak sizes, however, the ratios were higher for N2 than for N1 at 10 and 40 L breathing rates. Higher ratios for N2 can be attributed to the lower resistance that allowed higher aerosol flow through the filter media and captured more negatively charged particles to produce lesser Cin or greater Cout/Cin ratio. Ratios obtained for SM1 at different leak sizes were higher than the ratios of N1 at 10 L. SM1 ratios, however, decreased dramatically at 40 L indicating that high flow rate may adversely affect the ratios. Further studies are needed to better understand the influence of filter media characteristics on the Companion measured Cout/Cin ratios.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Máscaras/normas , Dispositivos de Protección Respiratoria/normas , Diseño de Equipo , Filtración , Exposición por Inhalación/prevención & control , Ensayo de Materiales , Exposición Profesional/prevención & control , Tamaño de la Partícula
4.
J Occup Environ Hyg ; 9(7): 417-26, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22642759

RESUMEN

Fit factor is the ratio of the particle concentration outside (C(out)) to the inside (C(in)) of the respirator and assumes that filter penetration is negligible. For Class-95 respirators, concerns were raised that filter penetration could bias fit test measurements. The TSI N95-Companion was designed to overcome this limitation by measuring only 40-60 nm size particles. Recent research has shown that particles in this size range are the most penetrating for respirators containing electrostic filter media. The goal of this study was to better understand the performance of the N95-Companion by assessing the impact of filter penetration and by comparing C(out)/C(in) ratios measured by other aerosol instruments (nano-Differential Mobility Analyzer/Ultrafine Condensation Particle Counter (nano-DMA/UCPC) and the TSI PortaCount Plus) using N95 filtering facepiece respirators sealed to a manikin and with intentionally created leaks. Results confirmed that 40-60 nm-diameter size room air particles were most penetrating for the respirators tested. A nonlinear relationship was found between the N95-Companion-measured C(out)/C(in) ratios and the other instruments at the sealed condition and at the small leak sizes because the N95-Companion measures only charged particles that are preferentially captured by the electrostic filter media, while the other instrument configurations also measure uncharged particles, which are captured less efficiently. The C(out)/C(in) ratios from the N95-Companion for experiments conducted under sealed condition suggest that filter penetration of negatively charged 40-60 nm size particles was less than 0.05%. Thus, the N95-Companion measured C(out)/C(in) ratios are due primarily to particle penetration through leakage, not through filter media, while the C(out)/C(in) ratios for the PortaCount, nano-DMA/UCPC, and UCPC result from a combination of face seal leakage and filter penetration.


Asunto(s)
Aerosoles/análisis , Seguridad de Productos para el Consumidor , Filtración , Material Particulado/análisis , Dispositivos de Protección Respiratoria/normas , Maniquíes , Nanopartículas/análisis , Electricidad Estática
5.
Ann Occup Hyg ; 56(5): 568-80, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22294504

RESUMEN

National Institute for Occupational Safety and Health recommends the use of particulate respirators for protection against nanoparticles (<100 nm size). Protection afforded by a filtering facepiece particulate respirator is a function of the filter efficiency and the leakage through the face-to-facepiece seal. The combination of particle penetration through filter media and particle leakage through face seal and any component interfaces is considered as total inward leakage (TIL). Although the mechanisms and extent of nanoparticle penetration through filter media have been well documented, information concerning nanoparticle leakage through face seal is lacking. A previous study in our laboratory measured filter penetration and TIL for specific size particles. The results showed higher filter penetration and TIL for 50 nm size particles, i.e. the most penetrating particle size (MPPS) than for 8 and 400 nm size particles. To better understand the significance of particle penetration through filter media and through face seal leakage, this study was expanded to measure filter penetration at sealed condition and TIL with artificially introduced leaks for 20-800 nm particles at 8-40 l minute volumes for four N95 models of filtering facepiece respirators (FFRs) using a breathing manikin. Results showed that the MPPS was ~45 nm for all four respirator models. Filter penetration for 45 nm size particles was significantly (P < 0.05) higher than the values for 400 nm size particles. A consistent increase in filter penetrations for 45 and 400 nm size particles was obtained with increasing breathing minute volumes. Artificial leakage of test aerosols (mode size ~75 nm) through increasing size holes near the sealing area of FFRs showed higher TIL values for 45 nm size particles at different minute volumes, indicating that the induced leakage allows the test aerosols, regardless of particle size, inside the FFR, while filter penetration determines the TIL for different size particles. TIL values obtained for 45 nm size particles were significantly (P < 0.05) higher than the values obtained for 400 nm size particles for all four models. Models with relatively small filter penetration values showed lower TIL values than the models with higher filter penetrations at smaller leak sizes indicating the dependence of TIL values on filter penetration. When the electrostatic charge was removed, the FFRs showed a shift in the MPPS to ~150 nm with the same test aerosols (mode size ~75 nm) at different hole sizes and breathing minute volumes, confirming the interaction between filter penetration and face seal leakage processes. The shift in the MPPS from 45 to 150 nm for the charge removed filters indicates that mechanical filters may perform better against nanoparticles than electrostatic filters rated for the same filter efficiency. The results suggest that among the different size particles that enter inside the N95 respirators, relatively high concentration of the MPPS particles in the breathing zone of respirators can be expected in workplaces with high concentration of nanoparticles. Overall, the data obtained in the study suggest that good fitting respirators with lower filter penetration values would provide better protection against nanoparticles.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Diseño de Equipo/normas , Filtración/instrumentación , Ensayo de Materiales/métodos , Nanopartículas/análisis , Tamaño de la Partícula , Dispositivos de Protección Respiratoria/normas , Aerosoles/análisis , Cara , Filtración/normas , Humanos , Exposición por Inhalación/análisis , Exposición por Inhalación/prevención & control , Exposición por Inhalación/estadística & datos numéricos , Maniquíes , Modelos Biológicos , National Institute for Occupational Safety and Health, U.S. , Frecuencia Respiratoria , Estados Unidos
6.
J Occup Environ Hyg ; 9(2): 99-109, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22239104

RESUMEN

National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number of particles <100 nm and a count (particle number)-based detector.


Asunto(s)
Filtración/métodos , Nanopartículas/análisis , Dispositivos de Protección Respiratoria/normas , Aerosoles/análisis , Nanopartículas/química , National Institute for Occupational Safety and Health, U.S. , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Fotometría , Estados Unidos
7.
Ann Occup Hyg ; 55(3): 253-63, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21292731

RESUMEN

Nanoparticle (<100 nm size) exposure in workplaces is a major concern because of the potential impact on human health. National Institute for Occupational Safety and Health (NIOSH)-approved particulate respirators are recommended for protection against nanoparticles based on their filtration efficiency at sealed conditions. Concerns have been raised on the lack of information for face seal leakage of nanoparticles, compromising respiratory protection in workplaces. To address this issue, filter penetration and total inward leakage (TIL) through artificial leaks were measured for NIOSH-approved N95 and P100 and European certified Conformit'e Europe'en-marked FFP2 and FFP3 filtering facepiece respirator models sealed to a breathing manikin kept inside a closed chamber. Monodisperse sucrose aerosols (8-80 nm size) generated by electrospray or polydisperse NaCl aerosols (20-1000 nm size) produced by atomization were passed into the chamber. Filter penetration and TIL were measured at 20, 30, and 40 l min(-1) breathing flow rates. The most penetrating particle size (MPPS) was ∼50 nm and filter penetrations for 50 and 100 nm size particles were markedly higher than the penetrations for 8 and 400 nm size particles. Filter penetrations increased with increasing flow rates. With artificially introduced leaks, the TIL values for all size particles increased with increasing leak sizes. With relatively smaller size leaks, the TIL measured for 50 nm size particles was ∼2-fold higher than the values for 8 and 400 nm size particles indicating that the TIL for the most penetrating particles was higher than for smaller and larger size particles. The data indicate that higher concentration of nanoparticles could occur inside the breathing zone of respirators in workplaces where nanoparticles in the MPPS range are present, when leakage is minimal compared to filter penetration. The TIL/penetration ratios obtained for 400 nm size particles were larger than the ratios obtained for 50 nm size particles at the three different flow rates and leak sizes indicating that face seal leakage, not filter penetration, contributing to the TIL for larger size particles. Further studies on face seal leakage of nanoparticles for respirator users in workplaces are needed to better understand the respiratory protection against nanoparticle exposure.


Asunto(s)
Máscaras/normas , Nanopartículas , Salud Laboral , Dispositivos de Protección Respiratoria/normas , Contaminantes Ocupacionales del Aire/análisis , Análisis de Varianza , Diseño de Equipo , Filtración/instrumentación , Filtración/normas , Humanos , Cloruro de Sodio
8.
J Occup Environ Hyg ; 8(1): 13-22, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21154104

RESUMEN

Existing face mask and respirator test methods draw particles through materials under vacuum to measure particle penetration. However, these filtration-based methods may not simulate conditions under which protective clothing operates in the workplace, where airborne particles are primarily driven by wind and other factors instead of being limited to a downstream vacuum. This study was focused on the design and characterization of a method simulating typical wind-driven conditions for evaluating the performance of materials used in the construction of protective clothing. Ten nonwoven fabrics were selected, and physical properties including fiber diameter, fabric thickness, air permeability, porosity, pore volume, and pore size were determined. Each fabric was sealed flat across the wide opening of a cone-shaped penetration cell that was then housed in a recirculation aerosol wind tunnel. The flow rate naturally driven by wind through the fabric was measured, and the sampling flow rate of the Scanning Mobility Particle Sizer used to measure the downstream particle size distribution and concentrations was then adjusted to minimize filtration effects. Particle penetration levels were measured under different face velocities by the wind-driven method and compared with a filtration-based method using the TSI 3160 automated filter tester. The experimental results show that particle penetration increased with increasing face velocity, and penetration also increased with increasing particle size up to about 300 to 500 nm. Penetrations measured by the wind-driven method were lower than those obtained with the filtration method for most of the fabrics selected, and the relative penetration performances of the fabrics were very different due to the vastly different pore structures.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Nanopartículas/análisis , Ropa de Protección , Viento , Filtración , Exposición Profesional/análisis , Exposición Profesional/prevención & control , Tamaño de la Partícula , Propiedades de Superficie
9.
J Occup Environ Hyg ; 8(1): 23-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21154105

RESUMEN

N95 particulate filtering facepiece respirators are certified by measuring penetration levels photometrically with a presumed severe case test method using charge neutralized NaCl aerosols at 85 L/min. However, penetration values obtained by photometric methods have not been compared with count-based methods using contemporary respirators composed of electrostatic filter media and challenged with both generated and ambient aerosols. To better understand the effects of key test parameters (e.g., particle charge, detection method), initial penetration levels for five N95 model filtering facepiece respirators were measured using NaCl aerosols with the aerosol challenge and test equipment employed in the NIOSH respirator certification method (photometric) and compared with an ultrafine condensation particle counter method (count based) for the same NaCl aerosols as well as for ambient room air particles. Penetrations using the NIOSH test method were several-fold less than the penetrations obtained by the ultrafine condensation particle counter for NaCl aerosols as well as for room particles indicating that penetration measurement based on particle counting offers a more difficult challenge than the photometric method, which lacks sensitivity for particles < 100 nm. All five N95 models showed the most penetrating particle size around 50 nm for room air particles with or without charge neutralization, and at 200 nm for singly charged NaCl monodisperse particles. Room air with fewer charged particles and an overwhelming number of neutral particles contributed to the most penetrating particle size in the 50 nm range, indicating that the charge state for the majority of test particles determines the MPPS. Data suggest that the NIOSH respirator certification protocol employing the photometric method may not be a more challenging aerosol test method. Filter penetrations can vary among workplaces with different particle size distributions, which suggests the need for the development of new or revised "more challenging" aerosol test methods for NIOSH certification of respirators.


Asunto(s)
Aerosoles/análisis , Contaminantes Ocupacionales del Aire/análisis , National Institute for Occupational Safety and Health, U.S. , Dispositivos de Protección Respiratoria/normas , Aerosoles/química , Contaminantes Ocupacionales del Aire/química , Diseño de Equipo , Filtración , Ensayo de Materiales/métodos , Tamaño de la Partícula , Fotometría/métodos , Estados Unidos
10.
Ann Occup Hyg ; 53(8): 815-27, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19805391

RESUMEN

Concerns have been raised regarding the availability of National Institute for Occupational Safety and Health (NIOSH)-certified N95 filtering facepiece respirators (FFRs) during an influenza pandemic. One possible strategy to mitigate a respirator shortage is to reuse FFRs following a biological decontamination process to render infectious material on the FFR inactive. However, little data exist on the effects of decontamination methods on respirator integrity and performance. This study evaluated five decontamination methods [ultraviolet germicidal irradiation (UVGI), ethylene oxide, vaporized hydrogen peroxide (VHP), microwave oven irradiation, and bleach] using nine models of NIOSH-certified respirators (three models each of N95 FFRs, surgical N95 respirators, and P100 FFRs) to determine which methods should be considered for future research studies. Following treatment by each decontamination method, the FFRs were evaluated for changes in physical appearance, odor, and laboratory performance (filter aerosol penetration and filter airflow resistance). Additional experiments (dry heat laboratory oven exposures, off-gassing, and FFR hydrophobicity) were subsequently conducted to better understand material properties and possible health risks to the respirator user following decontamination. However, this study did not assess the efficiency of the decontamination methods to inactivate viable microorganisms. Microwave oven irradiation melted samples from two FFR models. The remainder of the FFR samples that had been decontaminated had expected levels of filter aerosol penetration and filter airflow resistance. The scent of bleach remained noticeable following overnight drying and low levels of chlorine gas were found to off-gas from bleach-decontaminated FFRs when rehydrated with deionized water. UVGI, ethylene oxide (EtO), and VHP were found to be the most promising decontamination methods; however, concerns remain about the throughput capabilities for EtO and VHP. Further research is needed before any specific decontamination methods can be recommended.


Asunto(s)
Descontaminación/métodos , Contaminación de Equipos/prevención & control , Dispositivos de Protección Respiratoria/normas , Equipo Reutilizado , Filtración/instrumentación , Humanos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Ensayo de Materiales/métodos
11.
Ann Occup Hyg ; 53(2): 117-28, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19261695

RESUMEN

The National Institute for Occupational Safety and Health (NIOSH) and European Norms (ENs) employ different test protocols for evaluation of air-purifying particulate respirators commonly referred to as filtering facepiece respirators (FFR). The relative performance of the NIOSH-approved and EN-certified 'Conformité Européen' (CE)-marked FFR is not well studied. NIOSH requires a minimum of 95 and 99.97% efficiencies for N95 and P100 FFR, respectively; meanwhile, the EN requires 94 and 99% efficiencies for FFRs, class P2 (FFP2) and class P3 (FFP3), respectively. To better understand the filtration performance of NIOSH- and CE-marked FFRs, initial penetration levels of N95, P100, FFP2 and FFP3 respirators were measured using a series of polydisperse and monodisperse aerosol test methods and compared. Initial penetration levels of polydisperse NaCl aerosols [mass median diameter (MMD) of 238 nm] were measured using a method similar to the NIOSH respirator certification test method. Monodisperse aerosol penetrations were measured using silver particles for 4-30 nm and NaCl particles for 20-400 nm ranges. Two models for each FFR type were selected and five samples from each model were tested against charge neutralized aerosol particles at 85 l min(-1) flow rate. Penetrations from the 238 nm MMD polydisperse aerosol test were <1% for N95 and FFP2 models and <0.03% for P100 and FFP3 models. Monodisperse aerosol penetration levels showed that the most penetrating particle size (MPPS) was in the 30-60 nm range for all models of FFRs tested in the study. Percentage penetrations at the MPPS were <4.28, <2.22, <0.009 and <0.164 for the N95, FFP2, P100 and FFP3 respirator models, respectively. The MPPS obtained for all four FFR types suggested particle capturing by electrostatic mechanism. Liquid isopropanol treatment of FFRs shifted the MPPS to 200-300 nm and dramatically increased polydisperse as well as monodisperse aerosol penetrations of all four FFR types indicating that all the four FFR types share filtration characteristics of electret filters. Electrostatic charge removal from all four FFR types also increased penetration levels of 400-1000 nm range particles. Particle penetration data obtained in this study showed that the eight models of NIOSH-approved N95 and P100 and CE-marked FFP2 and FFP3 respirators used in this study provided expected levels of laboratory filtration performance against nanoparticles.


Asunto(s)
Salud Laboral , Dispositivos de Protección Respiratoria/normas , Aerosoles , Contaminantes Ocupacionales del Aire , Diseño de Equipo , Europa (Continente) , Filtración/instrumentación , Humanos , Nanopartículas , National Institute for Occupational Safety and Health, U.S./normas , Plata , Estados Unidos
12.
J Int Soc Respir Prot ; 26(3): 54-70, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-32661453

RESUMEN

Ashortage of NIOSH-approved respirators is predicted during an influenza pandemic and other infectious disease outbreaks. Healthcare workers may use surgical masks instead of respirators due to non-availability and for economical reasons. This study investigated the filtration performance of surgical masks for a wide size range of submicron particles including the sizes of many viruses. Five models of FDA-cleared surgical masks were tested for room air particle penetrations at constant and cyclic flow conditions. Penetrations of polydisperse NaCl aerosols (75±20 nm, count median diameter), monodisperse NaCl aerosols (20-400 nm range) and particles in the 20-1000 nm range were measured at 30 and 85 liters/min. Filtration performance of surgical masks varied widely for room air particles at constant flow and correlated with the penetration levels measured under cyclic flow conditions. Room air particle penetration levels were comparable to polydisperse and monodisperse aerosol penetrations at 30 and 85 liters/minute. Filtration performance of FDA-cleared surgical masks varied widely for room air particles, and monodisperse and polydisperse aerosols. The results suggest that not all FDA-cleared surgical masks will provide similar levels of protection to wearers against infectious aerosols in the size range of many viruses.

13.
J Occup Environ Hyg ; 5(9): 556-64, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18607812

RESUMEN

This study investigated the filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators (FFR) against six different monodisperse silver aerosol particles in the range of 4-30 nm diameter. A particle test system was developed and standardized for measuring the penetration of monodisperse silver particles. For respirator testing, five models of N95 and two models of P100 filtering facepiece respirators were challenged with monodisperse silver aerosol particles of 4, 8, 12, 16, 20, and 30 nm at 85 L/min flow rate and percentage penetrations were measured. Consistent with single-fiber filtration theory, N95 and P100 respirators challenged with silver monodisperse particles showed a decrease in percentage penetration with a decrease in particle diameter down to 4 nm. Penetrations less than 1 particle/30 min for 4-8 nm particles for one P100 respirator model, and 4-12 nm particles for the other P100 model, were observed. Experiments were also carried out with larger than 20 nm monodisperse NaCl particles using a TSI 3160 Fractional Efficiency Tester. NaCl aerosol penetration levels of 20 nm and 30 nm (overlapping sizes) particles were compared with silver aerosols of the same sizes by a three-way ANOVA analysis. A significant (p < 0.001) difference between NaCl and silver aerosol penetration levels was obtained after adjusting for particle sizes and manufacturers. A significant (p = 0.001) interaction with manufacturers indicated the difference in NaCl, and silver aerosol penetrations were not the same across manufacturers. The two aerosols had the same effect across 20 nm and 30 nm sizes as shown by the absence of any significant (p = 0.163) interaction with particle sizes. In the case of P100 FFRs, a significant (p < 0.001) difference between NaCl and silver aerosol (20 nm and 30 nm) penetrations was observed for both respirator models tested. The filtration data for 4-30 nm monodisperse particles supports previous studies that indicate NIOSH-approved air-purifying respirators provide expected levels of filtration protection against nanoparticles.


Asunto(s)
Nanopartículas del Metal , Salud Laboral , Dispositivos de Protección Respiratoria , Filtración , Humanos , National Institute for Occupational Safety and Health, U.S. , Tamaño de la Partícula , Plata , Estados Unidos
14.
J Int Soc Respir Prot ; 25(3): 27-41, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-32661452

RESUMEN

Dust masks are often confused with filtering facepiece respirators (FFR) but are not approved by NIOSH for respiratory protection against particulate exposure. This study reports the filtration performance of commercially available dust masks against submicron particles and discusses the relevance of these findings toward the filtration of nanoparticles. Seven different models of dust masks from local home improvement/hardware stores were challenged with submicron NaCl particles, and initial percentage penetration and resistance levels were measured using two test procedures. A polydisperse aerosol test (PAT) method, similar to the "worst case" conditions used in the NIOSH particulate respirator certification test protocol was used. A monodisperse aerosol test (MAT) method, which utilizes eleven different particle sizes in the range of 20-400 nm, were also used for particle penetration measurements at 30 and 85 L/min flow rates using the TSI 3160. Dust masks were designated as category low-, medium- and high-penetration dust masks based on penetration levels of <5%, 5-25% and >25%, respectively. Data collected using the PAT and the MAT methods showed <5% initial penetration levels for low-penetration dust masks, which is similar to the NIOSH-approved class-95 filtering facepiece respirators. Average penetration levels for medium- and high-penetration dust masks were between 8.9-24.2% and 74.5-96.9%, respectively. Penetration levels of MPPS particles from the MAT correlated with penetration levels from the PAT. Monodisperse MPPS penetration levels from MAT and penetration levels from PAT showed poor correlation with resistance values and no correlation with cost. The results of this study show that dust masks frequently do not provide filtration performance equivalent to that of NIOSH certified devices. Users of dust masks should be cautioned against using them for protection against particulates in the nano- or ultrafine size ranges.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA