Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-29994117

RESUMEN

The ability to train on a large dataset of labeled samples is critical to the success of deep learning in many domains. In this paper, we focus on motor vehicle classification and localization from a single video frame and introduce the "MIOvision Traffic Camera Dataset" (MIO-TCD) in this context. MIO-TCD is the largest dataset for motorized traffic analysis to date. It includes 11 traffic object classes such as cars, trucks, buses, motorcycles, bicycles, pedestrians. It contains 786,702 annotated images acquired at different times of the day and different periods of the year by hundreds of traffic surveillance cameras deployed across Canada and the United States. The dataset consists of two parts: a "localization dataset", containing 137,743 full video frames with bounding boxes around traffic objects, and a "classification dataset", containing 648,959 crops of traffic objects from the 11 classes. We also report results from the 2017 CVPR MIO-TCD Challenge, that leveraged this dataset, and compare them with results for state-of-the-art deep learning architectures. These results demonstrate the viability of deep learning methods for vehicle localization and classification from a single video frame in real-life traffic scenarios. The topperforming methods achieve both accuracy and Kappa score above 96% on the classification dataset and mean-average precision of 77% on the localization dataset. We also identify scenarios in which state-of-the-art methods still fail and we suggest avenues to address these challenges. Both the dataset and detailed results are publicly available on-line [1].

2.
PLoS One ; 8(12): e82722, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386111

RESUMEN

Spectral clustering methods have been shown to be effective for image segmentation. Unfortunately, the presence of image noise as well as textural characteristics can have a significant negative effect on the segmentation performance. To accommodate for image noise and textural characteristics, this study introduces the concept of sub-graph affinity, where each node in the primary graph is modeled as a sub-graph characterizing the neighborhood surrounding the node. The statistical sub-graph affinity matrix is then constructed based on the statistical relationships between sub-graphs of connected nodes in the primary graph, thus counteracting the uncertainty associated with the image noise and textural characteristics by utilizing more information than traditional spectral clustering methods. Experiments using both synthetic and natural images under various levels of noise contamination demonstrate that the proposed approach can achieve improved segmentation performance when compared to existing spectral clustering methods.


Asunto(s)
Modelos Teóricos , Artefactos , Análisis por Conglomerados , Procesamiento de Imagen Asistido por Computador , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA