Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 97(12): 1374-1382, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29863952

RESUMEN

Sclerostin (Scl) negatively regulates bone formation and favors bone resorption. Osteocytes, the cells responsible for mechanosensing, are known as the primary source of Scl and are a key regulator of bone remodeling through the induction of receptor activator of NF-κB ligand (RANKL). However, the spatiotemporal patterns of Scl in response to mechanical stimuli and their regulatory mechanisms remain unknown. We investigated the regulatory dynamics of the SOST/Scl expression generated by orthodontic tooth movement (OTM) in vivo and in vitro. In 8-wk-old male mice, coil springs were used to move the first molar mesially for 0, 1, 5, or 10 d. A regional histogram and the distribution patterns of the Scl expression showed that the Scl expression in the alveolar bone was increased on the compression side and peaked on day 5, with a gradual increase in the degree of significance. On day 10, the expression around the periodontal ligament (PDL)-alveolar bone boundary returned to the control level. Conversely, the expression of Scl on the tension side was only significantly decreased on day 1. Compressive force biphasically modulated the SOST/Scl expression in the isolated human PDL and thereby upregulated osteocytic SOST via paracrine activation in an osteocyte-PDL co-culture system designed to mimic OTM. This system did not affect the RANKL or OPG expression in osteocytes, suggesting that the bone resorption pathways are acted upon in a PDL-dependent and osteocyte-independent manner through RANKL/OPG signaling. Moreover, sclerostin neutralizing antibody significantly attenuated the upregulation of SOST that was induced by compressive force. In conclusion, our results provide evidence to support that factors secreted by the PDL, including SOST/Scl, control alveolar bone remodeling through osteocytic SOST/Scl in OTM.


Asunto(s)
Resorción Ósea/metabolismo , Glicoproteínas/metabolismo , Mecanotransducción Celular/fisiología , Osteocitos/metabolismo , Comunicación Paracrina/fisiología , Ligamento Periodontal/citología , Técnicas de Movimiento Dental , Proteínas Adaptadoras Transductoras de Señales , Animales , Remodelación Ósea , Péptidos y Proteínas de Señalización Intercelular , Masculino , Ratones , Ligando RANK/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA