Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(7): 11185-11191, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155760

RESUMEN

The energy flow of light represents a natural way of investigating complex light fields with respect to their applicability. With the generation of a three-dimensional Skyrmionic Hopfion structure in light, which is a topological 3D field configuration with particle-like nature, we paved the way to employ optical, topological constructs. In this work, we present an analysis of the transverse energy flow in the optical Skyrmionic Hopfion, showing the transfer of the topological properties to the mechanical attributes such as the optical angular momentum (OAM). Our findings thus prepare topological structures to be applied in optical traps and data storage or communication.

2.
Nat Commun ; 12(1): 6785, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811373

RESUMEN

Three-dimensional (3D) topological states resemble truly localised, particle-like objects in physical space. Among the richest such structures are 3D skyrmions and hopfions, that realise integer topological numbers in their configuration via homotopic mappings from real space to the hypersphere (sphere in 4D space) or the 2D sphere. They have received tremendous attention as exotic textures in particle physics, cosmology, superfluids, and many other systems. Here we experimentally create and measure a topological 3D skyrmionic hopfion in fully structured light. By simultaneously tailoring the polarisation and phase profile, our beam establishes the skyrmionic mapping by realising every possible optical state in the propagation volume. The resulting light field's Stokes parameters and phase are synthesised into a Hopf fibration texture. We perform volumetric full-field reconstruction of the [Formula: see text] mapping, measuring a quantised topological charge, or Skyrme number, of 0.945. Such topological state control opens avenues for 3D optical data encoding and metrology. The Hopf characterisation of the optical hypersphere endows a fresh perspective to topological optics, offering experimentally-accessible photonic analogues to the gamut of particle-like 3D topological textures, from condensed matter to high-energy physics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA