Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 27(10): 3374-3381, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32959415

RESUMEN

Reaction of [Pt(DMSO)2 Cl2 ] or [Pd(MeCN)2 Cl2 ] with the electron-rich LH=N,N'-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2 ] (1) but dinuclear [Pd2 L4 ] (2), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L- . The reversibly accessible cations [PtL2 ]+ and [Pd2 L4 ]+ were also studied, the latter as [Pd2 L4 ][B{3,5-(CF3 )2 C6 H3 }4 ] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII (L- )2 ] or [Pt. (L )2 ], [PtII (L0.5- )2 ]+ or [PtIII (L- )2 ]+ , [(PdII )2 (µ-L- )4 ] or [(Pd1.5 )2 (µ-L0.75- )4 ], and [(Pd2.5 )2 (µ-L- )4 ]+ or [(PdII )2 (µ-L0.75- )4 ]+ . In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2 ] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2 L4 ], and the dimetal (Pd2 4+ →Pd2 5+ ) instead of ligand (L- →L ) oxidation of the dinuclear palladium compound.

2.
Mol Pharm ; 15(3): 737-742, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-28749687

RESUMEN

Modified mRNA (mod-mRNA) has recently been widely studied as the form of RNA useful for therapeutic applications due to its high stability and lowered immune response. Herein, we extend the scope of the recently established RNA-TAG (transglycosylation at guanosine) methodology, a novel approach for genetically encoded site-specific labeling of large mRNA transcripts, by employing mod-mRNA as substrate. As a proof of concept, we covalently attached a fluorescent probe to mCherry encoding mod-mRNA transcripts bearing 5-methylcytidine and/or pseudouridine substitutions with high labeling efficiencies. To provide a versatile labeling methodology with a wide range of possible applications, we employed a two-step strategy for functionalization of the mod-mRNA to highlight the therapeutic potential of this new methodology. We envision that this novel and facile labeling methodology of mod-RNA will have great potential in decorating both coding and noncoding therapeutic RNAs with a variety of diagnostic and functional moieties.


Asunto(s)
Proteínas de Escherichia coli/química , Pentosiltransferasa/química , ARN Mensajero/química , Coloración y Etiquetado/métodos , Citidina/análogos & derivados , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , ARN Mensajero/genética , Especificidad por Sustrato , Proteína Fluorescente Roja
3.
Angew Chem Int Ed Engl ; 54(46): 13769-74, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26403565

RESUMEN

The most common oxidation states of copper in stable complexes are +I and +II. Cu(III) complexes are often considered as intermediates in biological and homogeneous catalysis. More recently, Cu(IV) species have been postulated as possible intermediates in oxidation catalysis. Despite the importance of these higher oxidation states of copper, spectroscopic data for these oxidation states remain scarce, with such information on Cu(IV) complexes being non-existent. We herein present the synthesis and characterization of three copper corrolato complexes. A combination of electrochemistry, UV/Vis/NIR/EPR spectroelectrochemistry, XANES measurements, and DFT calculations points to existence of three distinct redox states in these molecules for which the oxidation states +II, +III, and +IV can be invoked for the copper centers. The present results thus represent the first spectroscopic and theoretical investigation of a Cu(IV) species, and describe a redox series where Cu(II), Cu(III), and Cu(IV) are discussed within the same molecular platform.

4.
Chemistry ; 21(43): 15163-6, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26385512

RESUMEN

Ring opening of thiophenes containing an azo function in 2-position and subsequent dimerization through C-C coupling were observed on reaction with [Ru(acac)2 (CH3 CN)2 ] (acac=acetylacetonate) to produce two 1,3,5-hexatriene-linked redox-active azothiocarbonyl chelate systems. Interaction of the non-innocent chelate ligands and of the metals at a nanoscale distance of 1.45 nm via the conjugated hexatriene bridge was studied by magnetic and electron spectroscopic measurements in conjunction with DFT calculations, revealing four-center magnetic interactions of this unique setting and weak intervalence coupling after reduction.

5.
J Am Chem Soc ; 137(28): 8876-9, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26132207

RESUMEN

We demonstrate that bioorthogonal tetrazine ligations can be utilized to rapidly modify electrode surfaces, both with redox probes and enzymes. Furthermore, we show that the redox-active nature of 1,2,4,5-tetrazines can be exploited to gain electrochemical control over surface modification. To our knowledge this is the first demonstration of controlling a tetrazine ligation by changing the redox state of one of the reactants. We utilize the redox-switchable feature of tetrazine ligations for the site-selective functionalization of a 10 µm spaced interdigitated array of microelectrodes. In addition, we were able to achieve potential controlled ligation of the redox enzyme horseradish peroxidase to a macroscopic planar electrode. The rapid kinetics, bioorthogonal reactivity, and electrochemical control provided by tetrazine ligations should lead to numerous applications related to electrode functionalization.


Asunto(s)
Técnicas Electroquímicas/métodos , Compuestos Heterocíclicos con 1 Anillo/química , Armoracia/química , Armoracia/enzimología , Técnicas Electroquímicas/instrumentación , Enzimas Inmovilizadas/química , Diseño de Equipo , Peroxidasa de Rábano Silvestre/química , Microelectrodos , Modelos Moleculares , Oxidación-Reducción , Propiedades de Superficie
6.
Chemistry ; 21(35): 12275-8, 2015 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-26179080

RESUMEN

A new non-innocent ligand redox system, N,N'-bis(4-dimethylaminophenyl) substituted acetamidinato/acetamidinyl, has been designed and described by example of structurally and spectroscopically characterized ruthenium complexes. The hitherto unreported ligand is responsible for rather intense and narrow absorptions in the near-infrared region of the one- and two-electron oxidized forms. The spectroscopic, computational, and first structural characterization of an amidinyl radical complex adds to the list of established N-based radical ligands.

7.
Inorg Chem ; 53(14): 7389-403, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24983788

RESUMEN

The new compounds [Ru(acac)2(BIAN)], BIAN = bis(arylimino)acenaphthene (aryl = Ph (1a), 4-MeC6H4 (2a), 4-OMeC6H4 (3a), 4-ClC6H4 (4a), 4-NO2C6H4 (5a)), were synthesized and structurally, electrochemically, spectroscopically, and computationally characterized. The α-diimine sections of the compounds exhibit intrachelate ring bond lengths 1.304 Å < d(CN) < 1.334 and 1.425 Å < d(CC) < 1.449 Å, which indicate considerable metal-to-ligand charge transfer in the ground state, approaching a Ru(III)(BIAN(•-)) oxidation state formulation. The particular structural sensitivity of the strained peri-connecting C-C bond in the BIAN ligands toward metal-to-ligand charge transfer is discussed. Oxidation of [Ru(acac)2(BIAN)] produces electron paramagnetic resonance (EPR) and UV-vis-NIR (NIR = near infrared) spectroelectrochemically detectable Ru(III) species, while the reduction yields predominantly BIAN-based spin, in agreement with density functional theory (DFT) spin-density calculations. Variation of the substituents from CH3 to NO2 has little effect on the spin distribution but affects the absorption spectra. The dinuclear compounds {(µ-tppz)[Ru(Cl)(BIAN)]2}(ClO4)2, tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine; aryl (BIAN) = Ph ([1b](ClO4)2), 4-MeC6H4 ([2b](ClO4)2), 4-OMeC6H4 ([3b](ClO4)2), 4-ClC6H4 ([4b](ClO4)2), were also obtained and investigated. The structure determination of [2b](ClO4)2 and [3b](ClO4)2 reveals trans configuration of the chloride ligands and unreduced BIAN ligands. The DFT and spectroelectrochemical results (UV-vis-NIR, EPR) indicate oxidation to a weakly coupled Ru(III)Ru(II) mixed-valent species but reduction to a tppz-centered radical state. The effect of the π electron-accepting BIAN ancillary ligands is to diminish the metal-metal interaction due to competition with the acceptor bridge tppz.

8.
Chemistry ; 20(37): 11646-9, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25047010

RESUMEN

Compound (Me2 -cAAC:)2 Co(0) (2; Me2 -cAAC:=cyclic (alkyl) amino carbene; :C(CH2 )(CMe2 )2 N-2,6-iPr2 C6 H3 ) was synthesized by the reduction of the precursor (Me2 -cAAC:)2 Co(I) Cl (1) with KC8 in THF. The cyclic voltammogram of 1 exhibited one-electron reduction, which suggests that synthesis of a bent 2-metallaallene (2) from 1 should be possible. Compound 2 contains one cobalt atom in the formal oxidation state zero, which is stabilized by two Me2 -cAAC: ligands. Bond lengths from X-ray diffraction are 1.871(2) and 1.877(2) Šwith a C-Co-C bond angle of 170.12(8)°. The EPR spectrum of 2 exhibited a broad resonance attributed to the unique quasi-linear structure, which favors near degeneracy and gives rise to very rapid relaxation conditions. The cAACCo bond in 2 can be considered as a typical Dewar-Chatt-Duncanson type of bonding, which in turn retains 2.5 electron pairs on the Co atom as nonbonding electrons.

9.
Chemistry ; 20(30): 9240-5, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24664879

RESUMEN

The trichlorosilylcarbene monoradical (Cy-cAAC ·)SiCl3 (1) was directly converted to (Cy-cAAC ·)SiPh3 (2) by substitution of the three chlorine atoms with phenyl groups without affecting the radical center adjacent to the silicon atom. In addition to the structure determination, compound 2 was studied by EPR spectroscopy and DFT calculations. The three hyperfine lines in the EPR spectrum of 2 are due to the coupling with (14)N nucleus. Functionalized 1,4-quinodimethane Me2-cAAC=C6H4=CPh2 (7) was isolated, whereas carbon analogue of radical 2 was targeted. Cyclic voltammogram of 7 indicated that a stable radical-anion 7 ·-, as well as a radical-cation 7 ·+, can be prepared. Theoretical calculations showed that one-electron ionization energy and electron affinity of 7 are 5.1 and 0.7 eV mol(-1), respectively.

10.
Dalton Trans ; 43(11): 4437-50, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24326306

RESUMEN

The compounds [Ru(bpy)2(L(1))](ClO4)2 (1(ClO4)2), [Ru(bpy)2(L(2))](ClO4)2 (2(ClO4)2), [Ru(bpy)2(L(3))](ClO4)2 (3(ClO4)2), [Ru(bpy)2(L(4))](ClO4)2 (4(ClO4)2), [Ru(bpy)2(L(5))](ClO4)2 (5(ClO4)2), and [Ru(bpy)2(L(6))](ClO4)2 6(ClO4)2 (bpy = 2,2'-bipyridine, L(1) = 1-(4-isopropyl-phenyl)-4-(2-pyridyl)-1,2,3-triazole, L(2) = 1-(4-butoxy-phenyl)-4-(2-pyridyl)-1,2,3-triazole, L(3) = 1-(2-trifluoromethyl-phenyl)-4-(2-pyridyl)-1,2,3-triazole, L(4) = 4,4'-bis-{1-(2,6-diisopropyl-phenyl)}-1,2,3-triazole, L(5) = 4,4'-bis-{(1-phenyl)}-1,2,3-triazole, L(6) = 4,4'-bis-{1-(2-trifluoromethyl-phenyl)}-1,2,3-triazole) were synthesized from [Ru(bpy)2(EtOH)2](ClO4)2 and the corresponding "click"-derived pyridyl-triazole or bis-triazole ligands, and characterized by (1)H-NMR spectroscopy, elemental analysis, mass spectrometry and X-ray crystallography. Structural analysis showed a distorted octahedral coordination environment about the Ru(II) centers, and shorter Ru-N(triazole) bond distances compared to Ru-N(pyridine) distances in complexes of mixed-donor ligands. All the complexes were subjected to cyclic voltammetric studies, and the results were compared to the well-known [Ru(bpy)3](2+) compound. The oxidation and reduction potentials were found to be largely uninfluenced by ligand changes, with all the investigated complexes showing their oxidation and reduction steps at rather similar potentials. A combined UV-vis-NIR and EPR spectroelectrochemical investigation, together with DFT calculations, was used to determine the site of electron transfer in these complexes. These results provided insights into their electronic structures in the various investigated redox states, showed subtle differences in the spectroscopic signatures of these complexes despite their similar electrochemical properties, and provided clues to the unperturbed redox potentials in these complexes with respect to ligand substitutions. The reduced forms of the complexes display structured absorption bands in the NIR region. Additionally, we also present new synthetic routes for the ligands presented here using Cu-abnormal carbene catalysts.

11.
Dalton Trans ; 43(6): 2473-87, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24306621

RESUMEN

Bis(acetylacetonato)ruthenium complexes [Ru(acac)2(Q1-3)], 1-3, incorporating redox non-innocent 9,10-phenanthrenequinonoid ligands (Q1 = 9,10-phenanthrenequinone, 1; Q2 = 9,10-phenanthrenequinonediimine, 2; Q3 = 9,10-phenanthrenequinonemonoimine, 3) have been characterised electrochemically, spectroscopically and structurally. The four independent molecules in the unit cell of 2 are involved in intermolecular hydrogen bonding and π-π interactions, leading to a 2D network. The oxidation state-sensitive bond distances of the coordinated ligands Q(n) at 1.296(5)/1.289(5) Å (C-O), 1.315(3)/1.322(4) Å (C-N), and 1.285(3)/1.328(3) Å (C-O/C-N) in 1, 2 and 3, respectively, and the well resolved (1)H NMR resonances within the standard chemical shift range suggest DFT supported variable contributions from valence formulations [Ru(III)(acac)2(Q˙(-))] (spin-coupled) and [Ru(II)(acac)2(Q(0))], respectively. Complexes 1-3 exhibit one oxidation and two reduction steps with comproportionation constants Kc∼ 10(7)-10(22) for the intermediates. The electrochemically generated persistent redox states 1(n) (n = 0, 1-, 2-) and 2(n)/3(n) (n = 1+, 0, 1-, 2-) have been analysed by UV-vis-NIR spectroelectrochemistry and by EPR for the paramagnetic intermediates in combination with DFT and TD-DFT calculations, revealing significant differences in the oxidation state distribution at the {Ru-Q} interface for 1(n)-3(n). In particular, the diminished propensity of the NH-containing systems for reduction results in the preference for Ru(II)(Q(0)) relative to Ru(III)(Q˙(-)) (neutral compounds) and for Ru(II)(Q˙(-)) over the Ru(III)(Q(2-)) alternative in the case of the monoanionic complexes.


Asunto(s)
Electrones , Compuestos Organometálicos/química , Fenantrenos/química , Rutenio/química , Absorción , Electroquímica , Ligandos , Modelos Moleculares , Conformación Molecular
13.
Inorg Chem ; 52(15): 8467-75, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23859694

RESUMEN

The compound {(µ-Nindigo)[Ru(acac)2]2} = 1, H2(Nindigo) = indigo-N,N'-diphenylimine and acac(-) = 2,4-pentanedionate, has been structurally characterized in the rac form, which exhibits two edge-sharing six-membered chelate rings involving ruthenium, and the former ß-diketiminato functions with a twist angle of 33.9° around the central C-C bond. The metric parameters suggest a neutral π acceptor bridge containing coupled s-trans configurated α-diimines, which are coordinated by two ruthenium(II) centers. DFT calculations confirm the experimental structure and oxidation state assignment of the rac form; both diastereoisomers are present in solution according to (1)H NMR spectroscopy. A very intense long-wavelength MLCT absorption at 630 nm (ε = 66 800 M(-1) cm(-1)) and a weaker near-IR band at 1120 nm (ε = 3000 M(-1) cm(-1)) are observed for the CH3CN solution. Reversible one-electron reduction and oxidation steps were studied by cyclic voltammetry, differential pulse voltammetry, EPR, and UV-vis-NIR spectroelectrochemistry to exhibit metal-centered oxidation and mixed metal/ligand-centered reduction. These results are supported by TD-DFT calculations of the species rac- or meso-1(n), n = 3+, 2+, +, 0, -, 2-.

14.
Angew Chem Int Ed Engl ; 52(17): 4673-5, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23519944

RESUMEN

The unusual suspects: Depending on co-ligands L(n) and the effects of substituents (R), the well-known triazenides [N(NR)2](-) may act as EPR detectable coordinated triazenyl ligands, [N(NR)2](·). They are thus new non-innocent ligands and are related to the hitherto unused non-innocent nitrogen dioxide ligand, [NO2](·).

15.
Dalton Trans ; 42(10): 3721-34, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23302760

RESUMEN

The diamagnetic complexes [Ru(tpm)(bqdi)(Cl)]ClO(4) ([1]ClO(4)) (tpm = tris(1-pyrazolyl)methane, bqdi = o-benzoquinonediimine) and [Ru(tpm)(bqdi)(H(2)O)](ClO(4))(2) ([2](ClO(4))(2)) have been synthesized. The valence state-sensitive bond distances of coordinated bqdi [C-N: 1.311(5)/1.322(5) Å in [1]ClO(4); 1.316(7)/1.314(7) Å in molecule A and 1.315(6)/1.299(7) Å in molecule B of [2](ClO(4))(2)] imply its fully oxidised quinonediimine (bqdi(0)) character. DFT calculations of 1(+) confirm the {Ru(II)-bqdi(0)} versus the antiferromagnetically coupled {Ru(III)-bqdi˙(-)} alternative. The (1)H NMR spectra of [1]ClO(4) in different solvents show variations in chemical shift positions of the NH (bqdi) and CH (tpm) proton resonances due to their different degrees of acidity in different solvents. In CH(3)CN/0.1 mol dm(-3) Et(4)NClO(4), [1]ClO(4) undergoes one reversible Ru(II)⇌ Ru(III) oxidation and two reductions, the reversible first electron uptake being bqdi based (bqdi(0)/bqdi˙(-)). The electrogenerated paramagnetic species {Ru(III)-bqdi(0)}(1(2+)) and {Ru(II)-Q˙(-)}(1) exhibit Ru(III)-type (1(2+): = 2.211/Δg = 0.580) and radical-type (1: g = 1.988) EPR signals, respectively, as is confirmed by calculated spin densities (Ru: 0.767 in 1(2+), bqdi: 0.857 in 1). The aqua complex [2](ClO(4))(2) exhibits two one-electron oxidations at pH = 7, suggesting the formation of {Ru(IV)[double bond, length as m-dash]O} species. The electronic spectral features of 1(n) (n = charge associated with the different redox states of the chloro complex: 2+, 1+, 0) in CH(3)CN and of 2(2+) in H(2)O have been interpreted based on the TD-DFT calculations. The application potential of the aqua complex 2(2+) as a pre-catalyst towards the epoxidation of olefins has been explored in the presence of the sacrificial oxidant PhI(OAc)(2) in CH(2)Cl(2) at 298 K, showing the desired selectivity with a wide variety of alkenes. DFT calculations based on styrene as the model substrate predict that the epoxidation reaction proceeds through a concerted transition state pathway.

16.
Inorg Chem ; 51(11): 6237-44, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22594925

RESUMEN

The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 Å and N-C bond lengths of about 1.33 Å, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ⇌ [(acac)(2)Ru(III)(L(•-))] ⇌ [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(•-))](-), and [(bpy)(2)Ru(III)(L(•-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ⇌ [(bpy)(2)Ru(II)(L(•-))](+) ⇌ [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA