Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999034

RESUMEN

By using DFT simulations employing the GGA/PBE and LDA/CA-PZ approximations, the effects of the Hubbard U correction on the crystal structure, electronic properties, and chemical bands of the cubic phase (Pm3¯m) of STO were investigated. Our findings showed that the cubic phase (Pm3¯m) STO's band gaps and lattice parameters/volume are in reasonably good accordance with the experimental data, supporting the accuracy of our model. By applying the DFT + U method, we were able to obtain band gaps that were in reasonably good agreement with the most widely used experimental band gaps of the cubic (Pm3¯m) phase of STO, which are 3.20 eV, 3.24 eV, and 3.25 eV. This proves that the Hubbard U correction can overcome the underestimation of the band gaps induced by both GGA/PBE and LDA/CA-PZ approximations. On the other hand, the Sr-O and Ti-O bindings appear predominantly ionic and covalent, respectively, based on the effective valence charges, electron density distribution, and partial density of states analyses. In an attempt to enhance the performance of STO for new applications, these results might also be utilized as theoretical guidance, benefitting from our precise predicted values of the gap energies of the cubic phase (Pm3¯m).

2.
Materials (Basel) ; 16(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138765

RESUMEN

We performed B3PW and B3LYP computations for BaTiO3 (BTO), CaTiO3 (CTO), PbTiO3 (PTO), SrTiO3 (STO), BaZrO3 (BZO), CaZrO3 (CZO), PbZrO3 (PZO) and SrZrO3 (SZO) perovskite neutral (001) along with polar (011) as well as (111) surfaces. For the neutral AO- as well as BO2-terminated (001) surfaces, in most cases, all upper-layer atoms relax inwards, although the second-layer atoms shift outwards. On the (001) BO2-terminated surface, the second-layer metal atoms, as a rule, exhibit larger atomic relaxations than the second-layer O atoms. For most ABO3 perovskites, the (001) surface rumpling s is bigger for the AO- than BO2-terminated surfaces. In contrast, the surface energies, for both (001) terminations, are practically identical. Conversely, different (011) surface terminations exhibit quite different surface energies for the O-terminated, A-terminated and BO-terminated surfaces. Our computed ABO3 perovskite (111) surface energies are always significantly larger than the neutral (001) as well as polar (011) surface energies. Our computed ABO3 perovskite bulk B-O chemical bond covalency increases near their neutral (001) and especially polar (011) surfaces.

3.
Phys Chem Chem Phys ; 25(32): 21554-21561, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545410

RESUMEN

The rational construction of photocatalysts possesses tremendous potential to solve the energy crisis and environmental pollution; however, designing a catalyst for solar-driven overall water-splitting remains a great challenge. Herein, we propose a new MoS2-based photocatalyst (Co-P@MoS2), which skillfully uses the cobalt (Co) atom to stimulate in-plane S atoms and employs the phosphorus (P) atom to stabilize the basal plane by forming the Co-P bands. Using density functional theory (DFT), it was found that oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) can occur at the P site and S2 site of the Co-P@MoS2, respectively, and the dual-active sites successfully makes a delicate balance between the adsorption and dissociation of hydrogen. Furthermore, the improved overall water-splitting performance of Co-P@MoS2 was verified by analyzing the results of the electron structure and the dynamics of photogenerated carries. It was found that the imbalance of electron transfer caused by the introduction of the Co atom was the main contributor to the catalytic activity of Co-P@MoS2. Our study broadens the idea of developing photocatalysts for the overall water-splitting.

4.
Materials (Basel) ; 16(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37374487

RESUMEN

We have performed a systematic study resulting in detailed information on the structural, electronic and optical properties of the cubic (Pm3¯m) and tetragonal (P4mm) phases of PbTiO3 applying the GGA/PBE approximation with and without the Hubbard U potential correction. Through the variation in Hubbard potential values, we establish band gap predictions for the tetragonal phase of PbTiO3 that are in rather good agreement with experimental data. Furthermore, the bond lengths for both phases of PbTiO3 were assessed with experimental measurements, confirming the validity of our model, while chemical bond analysis highlights the covalent nature of the Ti-O and Pb-O bonds. In addition, the study of the optical properties of the two phases of PbTiO3, by applying Hubbard' U potential, corrects the systematic inaccuracy of the GGA approximation, as well as validating the electronic analysis and offering excellent concordance with the experimental results. Therefore, our results underline that the GGA/PBE approximation with the Hubbard U potential correction could be an effective method for obtaining reliable band gap predictions with moderate computational cost. Therefore, these findings will enable theorists to make use of the precise values of these two phases' gap energies to enhance PbTiO3's performance for new applications.

5.
Materials (Basel) ; 15(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408027

RESUMEN

The atomic structure of antiphase boundaries in Sr-doped lanthanum scandate (La1-xSrxScO3-δ) perovskite, promising as the proton conductor, was modelled by means of DFT method. Two structural types of interfaces formed by structural octahedral coupling were constructed: edge- and face-shared. The energetic stability of these two interfaces was investigated. The mechanisms of oxygen vacancy formation and migration in both types of interfaces were modelled. It was shown that both interfaces are structurally stable and facilitate oxygen ionic migration. Oxygen vacancy formation energy in interfaces is lower than that in the regular structure, which favours the oxygen vacancy segregation within such interfaces. The calculated energy profile suggests that both types of interfaces are advantageous for oxygen ion migration in the material.

6.
Phys Chem Chem Phys ; 24(14): 8529-8536, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35348556

RESUMEN

The fabrication of type II heterojunctions is an efficient strategy to facilitate charge separation in photocatalysis. Here, mixed dimensional 0D/2D van der Waals (vdW) heterostructures (graphene quantum dots (GQDs)-MoS2) for generating hydrogen from water splitting are investigated based on density functional theory (DFT). The electronic and photocatalytic properties of three heterostructures, namely, C6H6-MoS2, C24H12-MoS2 and C32H14-MoS2 are estimated by analyzing the density of states, charge density difference, work function, Bader charge, absorption spectra and band alignment. The results indicated that the built-in electric fields from GQDs to MoS2 boost charge separation. Meanwhile, all the GQDs-MoS2 exhibit strong absorption in the visible light region. Surprisingly, the transition of heterojunctions from type I to type II is realized by tuning the size of GQDs. In particular, C32H14-MoS2 with enhanced visible-light absorption and an appropriate band edge position, as a type II heterostructure, may be a promising photocatalyst for generating hydrogen from water splitting. Thus, in this work a novel type II 0D/2D nanocomposite as a photocatalyst is constructed that provides a strategy to regulate the type of heterostructure from the perspective of theoretical calculation.

7.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34835664

RESUMEN

On the basis of time-dependent density functional theory (TD-DFT) we performed first-principle calculations to predict optical properties and transition states of pristine, N- and S-doped, and N+S-codoped anatase TiO2 nanotubes of 1 nm-diameter. The host O atoms of the pristine TiO2 nanotube were substituted by N and S atoms to evaluate the influence of dopants on the photocatalytic properties of hollow titania nanostructures. The charge transition mechanism promoted by dopants positioned in the nanotube wall clearly demonstrates the constructive and destructive contributions to photoabsorption by means of calculated transition contribution maps. Based on the results of our calculations, we predict an increased visible-light-driven photoresponse in N- and S-doped and the N+S-codoped TiO2 nanotubes, enhancing the efficiency of hydrogen production in water-splitting applications.

8.
Nanoscale ; 12(8): 5055-5066, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32068219

RESUMEN

A structurally stable stacked multilayer carbonitride is predicted with the aid of ab initio calculations. This carbonitride consists of C3N tetrahedra, and is similar to T-carbon and thus named T-C3N. Its 2-dimensional (2D) monolayer is also carefully investigated in this work. The studies on electronic properties reveal that bulk and 2D T-C3N are insulators with a 5.542 eV indirect band gap and a 5.741 eV direct band gap, respectively. However, the monolayer T-C3N exhibits an excellent uniform porosity. Its 5.50 Å pore size is perfect for water nanofiltration. The adsorption and permeation of water molecules on the monolayer T-C3N are investigated. Its promising potential application in highly efficient nanofiltration membranes for seawater desalination is discussed.

9.
J Chem Inf Model ; 59(4): 1554-1562, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30884225

RESUMEN

Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of three intermediate states in the binding process. The analysis of the simulation trajectories demonstrates that, in the intermediate structures, KAR1 is stabilized by some hydrophobic residues (Phe26, Phe134, Leu142, Trp153, Phe157, Leu160, Phe194), along with several bridging water molecules, and meanwhile, the significant shifting occurs in the local conformation of the protein as the ligand's binding. A series of the residues (Gln141-Phe157) on the so-called "cap domain" are proposed to be responsible for capturing the ligand at the initial stage of the binding. Besides, the changes of the ligand's poses are also quantitatively characterized by the proper choice of the coordinate system. Our work will contribute to the more penetrating understanding of the ligand binding process and the receptor affinity difference between several members in the KAR family and help design new, more effective germination stimulants.


Asunto(s)
Germinación , Simulación de Dinámica Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Conformación Proteica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA