Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 181(3): 695-708, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26971522

RESUMEN

Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004-2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods-leaving out individual clusters, or leaving out individual bears-showed that correct prediction of bear visitation to large-biomass carcasses was 78-88 %, whereas the false-positive rate was 18-24 %. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002-2011) and examined trends in carcass visitation during fall hyperphagia (September-October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.


Asunto(s)
Sistemas de Información Geográfica , Ursidae , Animales , Ecosistema , Conducta Predatoria , Telemetría
2.
Ecol Evol ; 4(10): 2004-18, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24963393

RESUMEN

When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

3.
PLoS One ; 9(2): e88160, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24520354

RESUMEN

Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.


Asunto(s)
Ecosistema , Fenómenos de Retorno al Lugar Habitual/fisiología , Pinus/fisiología , Ursidae/fisiología , Animales , Femenino , Modelos Lineales , Masculino , Densidad de Población
4.
PLoS One ; 5(4): e10322, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20428240

RESUMEN

The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km(2); range = [95-10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.


Asunto(s)
Brucelosis/transmisión , Ciervos/microbiología , Animales , Animales Salvajes , Teorema de Bayes , Femenino , Densidad de Población , Estudios Seroepidemiológicos , Wyoming
5.
Ecol Appl ; 17(1): 140-53, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17479841

RESUMEN

Advances in acquiring and analyzing the spatial attributes of data have greatly enhanced the potential utility of wildlife disease surveillance data for addressing problems of ecological or economic importance. We present an approach for using wildlife disease surveillance data to identify areas for (or of) intervention, to spatially delineate paired treatment and control areas, and then to analyze these nonrandomly selected sites in a meta-analysis framework via before-after-control impact (BACI) estimates of effect size. We apply these methods to evaluate the effectiveness of attempts to reduce chronic wasting disease (CWD) prevalence through intensive localized culling of mule deer (Odocoileus hemionus) in north-central Colorado, USA. Areas where surveillance data revealed high prevalence or case clusters were targeted by state wildlife management agency personnel for focal scale (on average <17 km2) culling, primarily via agency sharpshooters. Each area of sustained culling that we could also identify as unique by cluster analysis was considered a potential treatment area. Treatment areas, along with spatially paired control areas that we constructed post hoc in a case-control design (collectively called "management evaluation sites"), were then delineated using home range estimators. Using meta-BACI analysis of CWD prevalence data for all management evaluation sites, the mean effect size (change of prevalence on treatment areas minus change in prevalence on their paired control areas) was 0.03 (SE = 0.03); mean effect size on treatment areas was not greater than on paired control areas. Excluding cull samples from prevalence estimates or allowing for an equal or greater two-year lag in system responses to management did not change this outcome. We concluded that management benefits were not evident, although whether this represented true ineffectiveness or was a result of lack of data or insufficient duration of treatment could not be discerned. Based on our observations, we offer recommendations for designing a management experiment with 80% power to detect a 0.10 drop in prevalence over a 6-12-year period.


Asunto(s)
Ciervos , Enfermedad Debilitante Crónica/terapia , Animales , Colorado/epidemiología , Enfermedad Debilitante Crónica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA