Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124368

RESUMEN

A novel dual-speed tool for which the shoulder and pin rotation speeds are separately established was utilized to friction stir weld cast magnesium AZ91 with wrought aluminum 6082-T6. To assess the performance and efficacy of the dual-speed tool, baseline dissimilar welds were also fabricated using a conventional FSW tool. Optical microscopy characterized the weld microstructures, and a numerical simulation enhanced the understanding of the temperature and material flow behaviors. For both tool types, regions of the welds contained significant amounts of the AZ91 primary eutectic phase, Al12Mg17, indicating that weld zone temperatures exceeded the solidus temperature of α-Mg (470 °C). Liquation, therefore, occurred during processing with subsequent eutectic formation upon cooling below the primary eutectic temperature (437 °C). The brittle character of the eutectic phase promoted cracking in the fusion zone, and the "process window" for quality welds was narrow. For the conventional tool, offsetting to the aluminum side (advancing side) mitigated eutectic formation and improved weld quality. For the dual-speed tool, experimental trials demonstrated that separate rotation speeds for the shoulder and pin could mitigate eutectic formation and produce quality welds without an offset at relatively higher weld speeds than the conventional tool. Exploration of various weld parameters coupled with the simulation identified the bounds of a process window based on the percentage of weld cross-section exceeding the eutectic temperature and on the material flow rate at the tool trailing edge. For the dual-speed tool, a minimum flow rate of 26.0 cm3/s and a maximum percentage of the weld cross-section above the eutectic temperature of 35% produced a defect-free weld.

2.
Materials (Basel) ; 16(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297087

RESUMEN

For the friction stir welding (FSW) of AZ91 magnesium alloy, low tool rotational speeds and increased tool linear speeds (ratio 3.2) along with a larger diameter shoulder and pin are utilized. The research focused on the influence of welding forces and the characterization of the welds by light microscopy, scanning electron microscopy with an electron backscatter diffraction system (SEM-EBSD), hardness distribution across the joint cross-section, joint tensile strength, and SEM examination of fractured specimens after tensile tests. The micromechanical static tensile tests performed are unique and reveal the material strength distribution within the joint. A numerical model of the temperature distribution and material flow during joining is also presented. The work demonstrates that a good-quality joint can be obtained. A fine microstructure is formed at the weld face, containing larger precipitates of the intermetallic phase, while the weld nugget comprises larger grains. The numerical simulation correlates well with experimental measurements. On the advancing side, the hardness (approx. 60 HV0.1) and strength (approx. 150 MPa) of the weld are lower, which is also related to the lower plasticity of this region of the joint. The strength (approx. 300 MPa) in some micro-areas is significantly higher than that of the overall joint (204 MPa). This is primarily attributable to the macroscopic sample also containing material in the as-cast state, i.e., unwrought. The microprobe therefore includes less potential crack nucleation mechanisms, such as microsegregations and microshrinkage.

3.
Materials (Basel) ; 15(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35683142

RESUMEN

The aim of this work was to develop a new coating material based on Ni20Cr alloy modified with up to 50%wt. rhenium. The modification was carried out by the mechanical mixing of the base powder and ammonium perrhenate with the subsequent thermoreduction in an H2 atmosphere. The obtained powder consists of a nickel-chromium core surrounded by a rhenium shell. The characterization of the powders-including their microstructure, phase and chemical composition, density, flowability, particle size distribution, and specific surface area-was performed. The influence of plasma current intensity and hydrogen gas flow on in-flight particle temperature and velocity were investigated. The results indicate that there is interdiffusion between the base Ni20Cr and the rhenium shell, resulting in intermediary solid solution(s). The modified powders have a higher specific surface area and a lower flowability, but this does not prevent them from being used as feedstock in plasma spraying. In-flight measurements reveal that increasing the content of rhenium allows for the higher temperature of particles, though it also reduces their speed.

4.
J Mech Behav Biomed Mater ; 119: 104519, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915438

RESUMEN

Free from toxic elements biomaterial potentially applicable for load bearing biomedical implants was obtained for the first time by laser cladding of S520 bioactive glass onto ultrafine-grained commercially pure titanium. The cladding process affected the refined structure of the substrate inducing martensitic transformation near its surface. The α' acicular martensite gradually passes into relatively large grains with increasing distance from the substrate surface, which subsequently are transformed into smaller grains of about 2 µm in diameter. Both the melted zone, where the martensite crystalline structure was found, and the HAZ are characterised by relatively lower hardness in comparison with that of the substrate core indicating increased ductility. Such a combination of zones with different properties may have a synergistic effect and is beneficial for the obtained biomaterial. A characteristic region in the form of about 3 µm width band was formed in the melted zone at about 10 µm below the titanium surface. The results of EDS analysis indicate that several glass elements moved into the region while the titanium content in the same area was decreased. High bioactivity of the coated S520 glass was revealed by in vitro testing with SBF solution and almost complete reduction of P concentration occurred after 14 days.


Asunto(s)
Vidrio , Titanio , Materiales Biocompatibles , Rayos Láser , Ensayo de Materiales , Propiedades de Superficie
5.
Materials (Basel) ; 11(7)2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029477

RESUMEN

Al-Mg-Si alloys are used not only as construction material, but also as a material for electrical conductors. For this application, it is crucial for the alloy to achieve a balance between strength and electrical properties. This is achieved in practice by a combination of strain and precipitation hardening. The current paper focuses on a heat treatment procedure in which the EN AW 6101 alloy is cooled by a flowing air stream from the solutionizing temperature down to the artificial ageing temperature. The proposed procedure, unlike the common heat treatment leading to the T6 temper, allowed for the precipitation of the coarser ß" phase with the presence of relatively wide precipitate-free zones. The age hardening response was investigated by Brinell hardness measurements, eddy current testing and microstructural observations using transmission electron microscopy (TEM). The applied heat treatment resulted in slightly lower strength (compared to the T6 temper), but improved electrical performance of the alloy.

6.
J Microsc ; 224(Pt 1): 58-61, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17100907

RESUMEN

Results are presented of an investigation of the microstructure development during mechanical alloying and following consolidation of an Nb15Ti15Al alloy. The alloy was synthesized from elemental as well as pre-alloyed powders. The microstructure of this material was examined by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. The use of pre-alloyed TiAl powder for synthesis of the Nb15Ti15Al alloy meant that a much shorter time was required to complete the mechanical alloying process compared with the synthesis of elemental powders. The investigation indicates that three phases were present in the consolidated materials: the Nb solid solution, the Nb(3)Al intermetallic phase and the dispersoid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA