Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(20): 26664-26673, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38739213

RESUMEN

High-power impulse magnetron sputtering (HiPIMS) plus kick is a physical vapor deposition method that employs bipolar microsecond-scale voltage pulsing to precisely control the ion energy during sputter deposition. HiPIMS plus kick for AlN deposition is difficult since nitride deposition is challenged by low surface diffusion and high susceptibility to ion damage. In this current study, a systematic examination of the process parameters of HiPIMS plus kick was conducted. Under optimized main negative pulsing conditions, this study documented that a 25 V positive kick biasing for AlN deposition is ideal for optimizing a high quality film, as shown by X-ray diffraction and transmission electron microscopy as well as optimal thermal conductivity while increasing high speed deposition (25 nm/min) and obtaining ultrasmooth surfaces (rms roughness = 0.5 nm). HiPIMS plus kick was employed to deposit a single-texture 1 µm AlN film with a 7.4° rocking curve, indicating well oriented grains, which correlated with high thermal conductivity (121 W/m·K). The data are consistent with the optimal kick voltage enabling enhanced surface diffusion due to ion-substrate collisions without damaging the AlN grains.

2.
Nanoscale Adv ; 3(13): 3909-3917, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36133018

RESUMEN

We demonstrate the synergistic effects of Ga doping and Mg alloying into ZnO on the large enhancement of the piezopotential and stress sensing performance of piezotronic pressure sensors made of Ga-doped MgZnO films. Piezopotential-induced pressure sensitivity was enhanced through the modulation of the Schottky barrier height. Doping with Ga (0.62 Å) of larger ionic radius and alloying with Mg (0.57 Å) of smaller ionic radius than Zn ions can synergistically affect the overall structural, optical and piezoelectric properties of the resulting thin films. The crystal quality of Ga-doped MgZnO films either improved (X Ga ≦ 0.041) or deteriorated (X Ga ≧ 0.041) depending on the Ga doping concentration. The band gap increased from 3.90 eV for pristine MgZnO to 3.93 eV at X Ga = 0.076, and the piezoelectric coefficient (d 33) improved from ∼23.25 pm V-1 to ∼33.17 pm V-1 at an optimum Ga concentration (X Ga = 0.027) by ∼2.65 times. The change in the Schottky barrier height ΔΦ b increased from -4.41 meV (MgZnO) to -4.81 meV (X Ga = 0.027) and decreased to -3.99 meV at a high Ga doping concentration (X Ga = 0.041). The stress sensitivity (0.2 kgf) enhanced from 28.50 MPa-1 for the pristine MgZnO to 31.36 MPa-1 (X Ga = 0.027) and decreased to 25.56 MPa-1 at higher Ga doping concentrations, indicating the synergistic effects of Ga doping and Mg alloying over the pressure sensing performance of Ga-doped MgZnO films.

3.
ACS Appl Mater Interfaces ; 11(51): 48212-48220, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31829543

RESUMEN

Discovery of plasmon resonance and negative permittivity in carbon allotropes at much lower frequencies than those of metals has evoked interest to develop random metacomposites by suitable means of addition of these dispersoids in an overall dielectric matrix. Random metacomposites have always the advantage for their easy preparation techniques over those of their regular arrayed artificial counterpart. However, thermal management during the heat generation by electromagnetic attenuation in metamaterials is not yet studied well. The present communication discusses the dielectric permittivities and loss parameters of aluminum nitride-single-wall carbon nanotube (AlN-SWCNT) composites considering high thermal conductivities of both materials. The composites are dense and have been prepared by a standard powder technological method using hot pressing at 1850 °C under a nitrogen atmosphere. Increase in the negative permittivity value with SWCNT concentration (1, 3, and 6 vol %) in the composites had been observed at low frequencies. Characterization of the materials with Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and microstructure analysis by scanning and transmission electron microscopy (TEM) revealed the survivability of the SWCNTs and the nature of the matrix-filler interface. Plasmonic resonance following Drude's law could be observed at much lower plasma frequencies than that of pure SWCNT and for very little SWCNT addition. Exhibition of the negative permittivity has been explained with relation to the microstructure of the composites observed from field emission scanning electron micrographs (FESEM), TEM images, and the equivalent circuit model. High energy conversion efficiency is expected in these composites due to the possession of dual functionalities like high thermal conductivity as well as high negative permittivity, which should ensure the application of these materials in wave filter, cloaking device, supercapacitors, and wireless communication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA