Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36838942

RESUMEN

The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied. However, it is a huge challenge to achieve high-efficiency performance as a photoelectrode in water splitting. This paper reports a study of chemical vapor deposition (CVD) growth of hematite nanocrystalline thin films on fluorine-doped tin oxide as a photoanode for photoelectrochemical water splitting, with a particular focus on the effect of the precursor-substrate distance in the CVD system. A full morphological, structural, and optical characterization of hematite nanocrystalline thin films was performed, revealing that no change occurred in the structure of the films as a function of the previously mentioned distance. However, it was found that the thickness of the hematite film, which is a critical parameter in the photoelectrochemical performance, linearly depends on the precursor-substrate distance; however, the electrochemical response exhibits a nonmonotonic behavior. A maximum photocurrent value close to 2.5 mA/cm2 was obtained for a film with a thickness of around 220 nm under solar irradiation.


Asunto(s)
Enfermedades Cardiovasculares , Flúor , Humanos , Gases , Agua
2.
Molecules ; 25(22)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33212989

RESUMEN

Nickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations. Differences in the growth mechanisms of the nanopillars were observed, depending on the deposition method. A high correlation between the height of the nanopillars and the charge synthesis was observed irrespective of the electrochemical technique. The magnetization measurements demonstrated a main dependence with the height of the nanopillars. The synthesis of Ni nanosystems with a controllable aspect ratio provides an effective way to produce well-ordered networks for wide scientific applications.


Asunto(s)
Óxido de Aluminio/química , Galvanoplastia , Níquel/química , Silicio/química , Campos Magnéticos , Porosidad , Difracción de Rayos X
3.
Nanomaterials (Basel) ; 9(9)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540072

RESUMEN

Fourth generation polyamidoamine dendrimer (PAMAM, G4) modified with fluorescein units (F) at the periphery and Pt nanoparticles stabilized by L-ascorbate were prepared. These dendrimers modified with hydrophobic fluorescein were used to achieve self-assembling structures, giving rise to the formation of nanoaggregates in water. The photoactive fluorescein units were mainly used as photosensitizer units in the process of the catalytic photoreduction of water propitiated by light. Complementarily, Pt-ascorbate nanoparticles acted as the active sites to generate H2. Importantly, the study of the functional, optical, surface potential and morphological properties of the photosensitized dendrimer aggregates at different irradiation times allowed for insights to be gained into the behavior of these systems. Thus, the resultant photosensitized PAMAM-fluorescein (G4-F) nanoaggregates (NG) were conveniently applied to light-driven water photoreduction along with sodium L-ascorbate and methyl viologen as the sacrificial reagent and electron relay agent, respectively. Notably, these aggregates exhibited appropriate stability and catalytic activity over time for hydrogen production. Additionally, in order to propose a potential use of these types of systems, the in situ generated H2 was able to reduce a certain amount of methylene blue (MB). Finally, theoretical electronic analyses provided insights into the possible excited states of the fluorescein molecules that could intervene in the global mechanism of H2 generation.

4.
Talanta ; 126: 12-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24881529

RESUMEN

We report on the use of flow injection analysis with amperometric detection (FIA-EC) to evaluate the potential of using diamond electrodes for the analysis of three estrogenic compounds: estrone, 17-ß-estradiol, and estriol. Amperometric detection was performed using a cathodically pretreated boron-doped diamond electrode that offered low background current, relatively low limits of detection, and good response reproducibility and stability. For all three compounds, response linearity was observed over the concentration range tested, 0.10 to 3.0µmol L(-1), the sensitivity was ca. 10mA L mol(-1), and the minimum concentration detection (S/N≥3) was 0.10µmol L(-1) (~27µg L(-1)). The response variability with multiple injections was ca. 10% (RSD) over 20 injections. For estrone, the oxidation reaction on diamond does not proceed through an adsorbed state like it does on glassy carbon. After an initial current attenuation, the diamond electrode exhibited a stable response (oxidation current) for 3 days of continuous use, indicative of minimal surface contamination or fouling by reaction intermediates and products. The method for estrone was assessed using spiked city tap and local river water. Estrone recoveries in spiked city and river water samples presented standard deviations of less than 10%. In summary, the FIA-EC method with a diamond electrode enables sensitive, reproducible, stable, quick, and inexpensive determination of estrogenic compounds in water samples.


Asunto(s)
Boro/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Estrógenos/análisis , Adsorción , Electrodos , Estradiol/análisis , Estradiol/química , Estriol/análisis , Estriol/química , Estrógenos/química , Estrona/análisis , Estrona/química , Análisis de Inyección de Flujo/métodos , Oxidación-Reducción , Reproducibilidad de los Resultados
5.
Analyst ; 139(12): 3160-6, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24802953

RESUMEN

The electrochemical pretreatment of diamond microelectrodes was investigated for the purpose of learning how an anodic, cathodic or a combined anodic + cathodic polarization affects the charge-transfer kinetics for two surface-sensitive redox systems: ferri/ferrocyanide and serotonin (5-hydroxytryptamine, 5-HT). The pretreatments were performed in 0.5 mol L(-1) H2SO4. The anodic pretreatment was performed galvanically for 30 s at 250 mA cm(-2). The cathodic pretreatment was performed for 180 s at -250 mA cm(-2). The combined pretreatment involved application of the anodic step first followed by the cathodic step. The results clearly demonstrate that the best performance for both redox systems is obtained after the cathodic polarization, which presumably activates the electrode by cleaning the surface and removing site-blocking surface carbon-oxygen functionalities. The cathodic pretreatment was found to be effective at activating a fouled microelectrode in situ. This observation has important implication for the measurement of 5-HT in the bowel.


Asunto(s)
Colon/química , Diamante , Microelectrodos , Serotonina/análisis , Humanos , Técnicas In Vitro
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA