Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39202680

RESUMEN

Yeasts are the usual contaminants in fruit juices and other beverages, responsible for the decrease in the quality and shelf-life of such products. Preservatives are principally added to these beverages to enhance their shelf-life. With the increasing consumer concern towards chemical food additives, plant-derived antimicrobials have attracted the attention of researchers as efficient and safer anti-yeast agents. However, the methods currently used for determining their anti-yeast activity are time- and material-consuming. In this study, the anti-yeast effect of plant phenolic compounds in apple and orange juice food models using microtiter plates has been evaluated in order to validate the modified broth microdilution method for screening the antimicrobial activity of juice preservative agents. Among the twelve compounds tested, four showed a significant in vitro growth-inhibitory effect against all tested yeasts (Saccharomyces cerevisiae, Zygosaccharomyces bailii, and Zygosaccharomyces rouxii) in both orange and apple juices. The best results were obtained for pterostilbene in both juices with minimum inhibitory concentrations (MICs) ranging from 32 to 128 µg/mL. Other compounds, namely oxyresveratrol, piceatannol, and ferulic acid, exhibited moderate inhibitory effects with MICs of 256-512 µg/mL. Furthermore, the results indicated that differences in the chemical structures of the compounds tested significantly affected the level of yeast inhibition, whereas stilbenes with methoxy and hydroxy groups produced the strongest effect. Furthermore, the innovative assay developed in this study can be used for screening the anti-yeast activity of juice preservative agents because it saves preparatory and analysis time, laboratory supplies, and manpower in comparison to the methods commonly used.

2.
Foods ; 13(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790758

RESUMEN

This study presents a new pneumatic air jet excitation nozzle, specifically designed for food processing applications. The device, which uses compressed air equipment and a precision solenoid valve, controls air discharge through a parametric air jet nozzle. Tests showed that the device could achieve shooting frequencies in the 40-45 Hz range, with operational pressures between 5 and 7 bar. A sensor system was used to measure the force generated by the device at different frequencies and pressures. Using the Design of Experiments (DOE) methodology, we identified optimal cavity designs for 5 and 6 bar pressures. These designs outperformed others in generating uniform force and maintaining consistent vibration voltage behavior. This highlights the efficacy of our approach in enhancing device performance under different conditions. The device's practical application in food processing was demonstrated, particularly in delicate tasks such as the selective harvesting of sensitive crops like coffee fruits. The precise vibrations generated by the device could potentially enhance harvesting efficiency while significantly reducing mechanical damage to plants. The results position the device as a compelling proof of concept, offering an alternative method for exciting biostructures in food processing. This device opens up new possibilities in agricultural and biological fields, providing a non-intrusive and practical approach to manipulating and interacting with delicate, contactless structures, with a specific focus on improving food processing efficiency and quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA