Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicology ; 22(10): 1526-37, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24114185

RESUMEN

Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient.


Asunto(s)
Arsénico/toxicidad , Microbiología del Suelo , Contaminantes del Suelo/toxicidad , Suelo/química , Biodegradación Ambiental , Biomasa , Brasil , Monitoreo del Ambiente , Minería , Fotometría , Espectrofotometría Atómica
2.
Appl Environ Microbiol ; 78(18): 6726-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22798370

RESUMEN

Cowpea is a legume of great agronomic importance that establishes symbiotic relationships with nitrogen-fixing bacteria. However, little is known about the genetic and symbiotic diversity of these bacteria in distinct ecosystems. Our study evaluated the genetic diversity and symbiotic efficiencies of 119 bacterial strains isolated from agriculture soils in the western Amazon using cowpea as a trap plant. These strains were clustered into 11 cultural groups according to growth rate and pH. The 57 nonnodulating strains were predominantly fast growing and acidifying, indicating a high incidence of endophytic strains in the nodules. The other 62 strains, authenticated as nodulating bacteria, exhibited various symbiotic efficiencies, with 68% of strains promoting a significant increase in shoot dry matter of cowpea compared with the control with no inoculation and low levels of mineral nitrogen. Fifty genotypes with 70% similarity and 21 genotypes with 30% similarity were obtained through repetitive DNA sequence (BOX element)-based PCR (BOX-PCR) clustering. The 16S rRNA gene sequencing of strains representative of BOX-PCR clusters showed a predominance of bacteria from the genus Bradyrhizobium but with high species diversity. Rhizobium, Burkholderia, and Achromobacter species were also identified. These results support observations of cowpea promiscuity and demonstrate the high symbiotic and genetic diversity of rhizobia species in areas under cultivation in the western Amazon.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Variación Genética , Fijación del Nitrógeno , Microbiología del Suelo , Bacterias/genética , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Fabaceae/microbiología , Fabaceae/fisiología , Datos de Secuencia Molecular , Tipificación Molecular , Filogenia , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA