Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202224

RESUMEN

Biofilms are assemblages of microbial cells, extracellular polymeric substances (EPS), and other components extracted from the environment in which they develop. Within biofilms, the spatial distribution of these components can vary. Here we present a fundamental characterization study to show differences between biofilms formed by Gram-positive methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative Pseudomonas aeruginosa, and the yeast-type Candida albicans using synchrotron macro attenuated total reflectance-Fourier transform infrared (ATR-FTIR) microspectroscopy. We were able to characterise the pathogenic biofilms' heterogeneous distribution, which is challenging to do using traditional techniques. Multivariate analyses revealed that the polysaccharides area (1200-950 cm-1) accounted for the most significant variance between biofilm samples, and other spectral regions corresponding to amides, lipids, and polysaccharides all contributed to sample variation. In general, this study will advance our understanding of microbial biofilms and serve as a model for future research on how to use synchrotron source ATR-FTIR microspectroscopy to analyse their variations and spatial arrangements.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Pseudomonas aeruginosa/fisiología , Sincrotrones , Análisis de Fourier , Espectroscopía Infrarroja por Transformada de Fourier
2.
Anal Methods ; 12(38): 4597-4620, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32966380

RESUMEN

Environmental monitoring is necessary to ensure the overall health and conservation of an ecosystem. However, ecosystems (e.g. air, water, soil), are complex, involving numerous processes (both native and external), inputs, contaminants, and living organisms. As such, monitoring an environmental system is not a trivial task. The data obtained from natural systems is often multifaceted and convoluted, as a multitude of inputs can be intertwined within the matrix of the information obtained as part of a study. This means that trends and important results can be easily overlooked by conventional and single dimensional data analysis protocols. Recently, chemometric methods have emerged as a powerful method for maximizing the details contained within a chemical data set. Specifically, chemometrics refers to the use of mathematical and statistical analysis methods to evaluate chemical data, beyond univariant analysis. This type of analysis can provide a quantitative description of environmental measurements, while also having the capacity to reveal previously overlooked trends in data sets. Applying chemometrics to environmental data allows us to identify and describe the inter-relationship of environmental drivers, sources of contamination, and their potential impact upon the environment. This review aims to provide a detailed understanding of chemometric techniques, how they are currently used in environmental monitoring, and how these techniques can be used to improve current practices. An enhanced ability to monitor environmental conditions and to predict trends would be greatly beneficial to government and research agencies in their ability to develop environmental policies and analytical procedures.

3.
Nanoscale ; 12(38): 19888-19904, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32985644

RESUMEN

A fungal biofilm refers to the agglomeration of fungal cells surrounded by a polymeric extracellular matrix (ECM). The ECM is composed primarily of polysaccharides that facilitate strong surface adhesion, proliferation, and cellular protection from the surrounding environment. Biofilms represent the majority of known microbial communities, are ubiquitous, and are found on a multitude of natural and synthetic surfaces. The compositions, and in-turn nanomechanical properties, of fungal biofilms remain poorly understood, because these systems are complex, composed of anisotropic cellular and extracellular material, and importantly are species and environment dependent. Therefore, genomic variation, and/or mutations, as well as environmental and growth factors can change the composition of a fungal cell's biofilm. In this work, we probe the physico-mechanical and biochemical properties of two fungal species, Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans), as well as two antifungal resistant sub-species of C. neoformans, fluconazole-resistant C. neoformans (FlucRC. neoformans) and amphotericin B-resistant C. neoformans (AmBRC. neoformans). A new experimental methodology of characterization is proposed, employing a combination of atomic force microscopy (AFM), instrumented nanoindentation, and Synchrotron ATR-FTIR measurements. This allowed the nano-mechanical and chemical characterisation of each fungal biofilm.


Asunto(s)
Antifúngicos , Biopelículas , Antifúngicos/farmacología , Candida albicans , Matriz Extracelular , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica
4.
Phys Chem Chem Phys ; 21(36): 20219-20224, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31486450

RESUMEN

Flexible crystals are an emerging class of material with unique properties and a range of potential applications. Their relatively recent development means that mechanical characterisation protocols have not yet been widely established. There is a lack of quantitative flexibility measurements, such as the elastic modulus (Young's modulus), reported in the literature. In this work, we investigate amplitude modulated-frequency modulated atomic force microscopy (AM-FM AFM) as a fast, versatile method for measuring the elastic modulus of single flexible crystals. Specifically, the elastic modulus of single crystals of copper(ii) acetylacetonate (Cu(acac)2) was measured. The elastic modulus for Cu(acac)2 was found to be 4.79 ± 0.16 GPa. Importantly, this technique was able to map the variation in mechanical properties over the surface of the material with nanoscale resolution, showing some degree of correlation between surface morphology and elastic modulus. Additionally, the distribution of elastic modulus values can be measured at different locations on the crystal, giving a statistically robust distribution, which cannot be achieved using other methods.

5.
Foods ; 8(5)2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-31091835

RESUMEN

There is no doubt that the current knowledge in chemistry, biochemistry, biology, and mathematics have led to advances in our understanding about food and food systems. However, the so-called reductionist approach has dominated food research, hindering new developments and innovation in the field. In the last three decades, food science has moved into the digital and technological era, inducing several challenges resulting from the use of modern instrumental techniques, computing and algorithms incorporated to the exploration, mining, and description of data derived from this complexity. In this environment, food scientists need to be mindful of the issues (advantages and disadvantages) involved in the routine applications of chemometrics. The objective of this opinion paper is to give an overview of the key issues associated with the implementation of chemometrics in food research and development. Please note that specifics about the different methodologies and techniques are beyond the scope of this review.

6.
J Colloid Interface Sci ; 536: 363-371, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30380435

RESUMEN

The interface between water and a textured hydrophobic surface can exist in two regimes; either the Wenzel (surface-engulfed) or Cassie-Baxter (water-suspended) state. Better understanding of the influence of pattern geometry and spacing is crucial for the design of functional (super)hydrophobic surfaces, as inspired by numerous examples in nature. In this work, we have employed amplitude modulated - atomic force microscopy to visualize the air-water interface with an unprecedented degree of clarity on a superhydrophobic and a highly hydrophobic nanostructured surface. The images obtained provide the first real-time experimental visualization of the Cassie-Baxter wetting on the surface of biomimetic silicon nanopillars and a naturally superhydrophobic cicada wing. For both surfaces, the air-water interface was found to be remarkably well-defined, revealing a distinctly nanostructured air-water interface in the interstitial spacing. The degree of interfacial texture differed as a function of surface geometry. These results reveal that the air-water interface is heterogeneous in its structure and confirmed the presence of short-range interfacial ordering. Additionally, the overpressure values for each point on the interface were calculated, quantifying the difference in wetting behavior for the biomimetic and natural surface. Results suggest that highly-ordered, closely spaced nanofeatures facilitate robust Cassie-Baxter wetting states and therefore, can enhance the stability of (super)hydrophobic surfaces.


Asunto(s)
Aire , Materiales Biomiméticos/química , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica , Agua/química , Tamaño de la Partícula , Propiedades de Superficie
7.
Blood ; 103(2): 442-50, 2004 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-14504110

RESUMEN

In a series of 153 children with T-cell malignancies enrolled in 2 consecutive European Organization for Research and Treatment of Cancer (EORTC) trials, we assessed the HOX11L2 expression and/or the presence of a t(5;14)(q35;q32). Additionally, in 138 of these patients, HOX11 expression and SIL-TAL rearrangement were also assessed. These alterations were mutually exclusive, and their frequency was 23% (n = 35), 7% (n = 10), and 12% (n = 17), respectively. HOX11L2/t(5;14) positivity was more frequent in acute lymphoblastic leukemia (ALL) with cortical T immunophenotype and in children aged between 6 and 9 years. In contrast with previously reported data, patients positive and negative for HOX11L2/t(5;14) were comparable with regard to clinical outcome as well as to the response to a 7-day prephase treatment or to residual disease at completion of induction therapy. The 3-year event-free survival (EFS) rate (+/- SE percentage) for patients positive and negative for HOX11L2/t(5;14) was 75.5% (+/- 8.1%) and 68.3% (+/- 5.0%), respectively; the hazard ratio was 0.84 (95% confidence interval, 0.40-1.80). Patients with HOX11-high expression and those with SIL-TAL fusion had low levels of residual disease at the end of induction and a favorable prognosis: the 3-year EFS rate was 83.3% (+/- 8.5%) and 75.3% (+/- 12.6%), respectively. The results obtained in HOX11L2/t(5;14) patients in this study do not confirm the unfavorable prognosis reported in previous studies.


Asunto(s)
Cromosomas Humanos Par 14 , Cromosomas Humanos Par 5 , Proteínas de Homeodominio/genética , Leucemia de Células T/genética , Proteínas de Fusión Oncogénica , Proteínas Oncogénicas/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas/genética , Translocación Genética , Adolescente , Niño , Preescolar , Mapeo Cromosómico , Supervivencia sin Enfermedad , Femenino , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Leucemia de Células T/mortalidad , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Proteínas Proto-Oncogénicas , Estudios Retrospectivos , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA